1
|
Lei Y, Liu J, Bai Y, Zheng C, Wang D. Peptides as Versatile Regulators in Cancer Immunotherapy: Recent Advances, Challenges, and Future Prospects. Pharmaceutics 2025; 17:46. [PMID: 39861694 PMCID: PMC11768547 DOI: 10.3390/pharmaceutics17010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
The emergence of effective immunotherapies has revolutionized therapies for many types of cancer. However, current immunotherapy has limited efficacy in certain patient populations and displays therapeutic resistance after a period of treatment. To address these challenges, a growing number of immunotherapy drugs have been investigated in clinical and preclinical applications. The diverse functionality of peptides has made them attractive as a therapeutic modality, and the global market for peptide-based therapeutics is witnessing significant growth. Peptides can act as immunotherapeutic agents for the treatment of many malignant cancers. However, a systematic understanding of the interactions between different peptides and the host's immune system remains unclear. This review describes in detail the roles of peptides in regulating the function of the immune system for cancer immunotherapy. Initially, we systematically elaborate on the relevant mechanisms of cancer immunotherapy. Subsequently, we categorize peptide-based nanomaterials into the following three categories: peptide-based vaccines, anti-cancer peptides, and peptide-based delivery systems. We carefully analyzed the roles of these peptides in overcoming the current barriers in immunotherapy, including multiple strategies to enhance the immunogenicity of peptide vaccines, the synergistic effect of anti-cancer peptides in combination with other immune agents, and peptide assemblies functioning as immune stimulators or vehicles to deliver immune agents. Furthermore, we introduce the current status of peptide-based immunotherapy in clinical applications and discuss the weaknesses and future prospects of peptide-based materials for cancer immunotherapy. Overall, this review aims to enhance comprehension of the potential applications of peptide-based materials in cancer immunotherapy and lay the groundwork for future research and clinical applications.
Collapse
Affiliation(s)
- Yu Lei
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Dongyuan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
2
|
Petit N, Dyer JM, Gerrard JA, Domigan LJ, Clerens S. Insight into the self-assembly and gel formation of a bioactive peptide derived from bovine casein. BBA ADVANCES 2023. [DOI: 10.1016/j.bbadva.2023.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
3
|
Ghosh A, Dubey SK, Patra M, Mandal J, Ghosh NN, Das P, Bhowmick A, Sarkar K, Mukherjee S, Saha R, Bhattacharjee S. Solvent‐ and Substrate‐Induced Chiroptical Inversion in Amphiphilic, Biocompatible Glycoconjugate Supramolecules: Shape‐Persistent Gelation, Self‐Healing, and Antibacterial Activity. Chemistry 2022; 28:e202201621. [DOI: 10.1002/chem.202201621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Angshuman Ghosh
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
- TCG Lifescience, Block BN Sector V Saltlake Kolkata 700156 West Bengal India
| | - Soumen Kumar Dubey
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | - Maxcimilan Patra
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | - Jishu Mandal
- CIF Biophysical Laboratory CSIR-Indian Institute of Chemical Biology Jadavpur Kolkata 700032 West Bengal India
| | - Narendra Nath Ghosh
- Department of Chemistry University of Gour Banga Mokdumpur 732103 West Bengal India
| | - Priyanka Das
- Department of Microbiology University of Kalyani Kalyani, Nadia 741235 West Bengal India
| | - Arpita Bhowmick
- Department of Microbiology University of Kalyani Kalyani, Nadia 741235 West Bengal India
| | - Keka Sarkar
- Department of Microbiology University of Kalyani Kalyani, Nadia 741235 West Bengal India
| | - Suprabhat Mukherjee
- Department of Animal Science Kazi Nazrul University Asansol 713340 West Bengal India
| | - Rajat Saha
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | | |
Collapse
|
4
|
Quantitative nanomechanical properties evaluation of a family of β-sheet peptide fibres using rapid bimodal AFM. J Mech Behav Biomed Mater 2021; 124:104776. [PMID: 34479107 DOI: 10.1016/j.jmbbm.2021.104776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 11/20/2022]
Abstract
Self-assembling peptides have become important building blocks for materials design (e.g. hydrogels) and play a crucial role in a range of diseases including Alzheimer and Parkinson. In this context, accessing the nanomechanical properties of ubiquitous β-sheet rich nanofibres (e.g.: amyloids) is key to the formulation of materials and design of therapies. Although the bulk mechanical properties of hydrogels can easily be accessed using common techniques and equipment, the mechanical properties of their constituent fibres, in particular if with radii in the nanometre scale, are more challenging to measure and estimate. In this work we show for the first time how the rapid nanomechanical mapping technique: amplitude modulation-frequency modulation (AM-FM), can be used to determine the heights, Young's moduli and viscosity coefficients of a series of β-sheet peptide nanofibres with high statistical confidence. Our results show how peptide sequence and in particular length, charge and interaction with the substrate affect the viscoelastic properties of the peptide fibres.
Collapse
|
5
|
Jones CW, Morales CG, Eltiste SL, Yanchik‐Slade FE, Lee NR, Nilsson BL. Capacity for increased surface area in the hydrophobic core of β-sheet peptide bilayer nanoribbons. J Pept Sci 2021; 27:e3334. [PMID: 34151480 PMCID: PMC8349901 DOI: 10.1002/psc.3334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 04/19/2021] [Indexed: 12/12/2022]
Abstract
Amphipathic peptides with amino acids arranged in alternating patterns of hydrophobic and hydrophilic residues efficiently self-assemble into β-sheet bilayer nanoribbons. Hydrophobic side chain functionality is effectively buried in the interior of the putative bilayer of these nanoribbons. This study investigates consequences on self-assembly of increasing the surface area of aromatic side chain groups that reside in the hydrophobic core of nanoribbons derived from Ac-(XKXE)2 -NH2 peptides (X = hydrophobic residue). A series of Ac-(XKXE)2 -NH2 peptides incorporating aromatic amino acids of increasing molecular volume and steric profile (X = phenylalanine [Phe], homophenylalanine [Hph], tryptophan [Trp], 1-naphthylalanine [1-Nal], 2-naphthylalanine [2-Nal], or biphenylalanine [Bip]) were assessed to determine substitution effects on self-assembly propensity and on morphology of the resulting nanoribbon structures. Additional studies were conducted to determine the effects of incorporating amino acids of differing steric profile in the hydrophobic core (Ac-X1 KFEFKFE-NH2 and Ac-(X1,5 KFE)-NH2 peptides, X = Trp or Bip). Spectroscopic analysis by circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy indicated β-sheet formation for all variants. Self-assembly rate increased with peptide hydrophobicity; increased molecular volume of the hydrophobic side chain groups did not appear to induce kinetic penalties on self-assembly rates. Transmission electron microscopy (TEM) imaging indicated variation in fibril morphology as a function of amino acid in the X positions. This study confirms that hydrophobicity of amphipathic Ac-(XKXE)2 -NH2 peptides correlates to self-assembly propensity and that the hydrophobic core of the resulting nanoribbon bilayers has a significant capacity to accommodate sterically demanding functional groups. These findings provide insight that may be used to guide the exploitation of self-assembled amphipathic peptides as functional biomaterials.
Collapse
Affiliation(s)
| | - Crystal G. Morales
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Sharon L. Eltiste
- Department of Chemistry and Biochemistry, Center for Materials Interfaces in Research and Applications (¡MIRA!)Northern Arizona UniversityFlagstaffArizonaUSA
| | | | - Naomi R. Lee
- Department of Chemistry and Biochemistry, Center for Materials Interfaces in Research and Applications (¡MIRA!)Northern Arizona UniversityFlagstaffArizonaUSA
| | | |
Collapse
|
6
|
Petit N, Dyer JM, Clerens S, Gerrard JA, Domigan LJ. Oral delivery of self-assembling bioactive peptides to target gastrointestinal tract disease. Food Funct 2021; 11:9468-9488. [PMID: 33155590 DOI: 10.1039/d0fo01801e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peptides are known for their diverse bioactivities including antioxidant, antimicrobial, and anticancer activity, all three of which are potentially useful in treating colon-associated diseases. Beside their capability to stimulate positive health effects once released in the body, peptides are able to form useful nanostructures such as hydrogels. Combining peptide bioactivity and peptide gel-forming potentials can create interesting systems that can be used for oral delivery. This combination, acting as a two-in-one system, has the potential to avoid the need for delicate entrapment of a drug or natural bioactive compound. We here review the context and research progress, to date, in this area.
Collapse
Affiliation(s)
- Noémie Petit
- Riddet Institute, Massey University, PB 11 222, Palmerston North 4442, New Zealand
| | | | | | | | | |
Collapse
|
7
|
Yamada Y, Fichman G, Schneider JP. Serum Protein Adsorption Modulates the Toxicity of Highly Positively Charged Hydrogel Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8006-8014. [PMID: 33590757 PMCID: PMC9169696 DOI: 10.1021/acsami.0c21596] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Hydrogels formed from peptide self-assembly are a class of materials that are being explored for their utility in tissue engineering, drug and cell delivery, two- and three-dimensional cell culture, and as adjuvants in surgical procedures. Most self-assembled peptide gels can be syringe-injected in vivo to facilitate the local delivery of payloads, including cells, directly to the targeted tissue. Herein, we report that highly positively charged peptide gels are inherently toxic to cells, which would seem to limit their utility. However, adding media containing fetal bovine serum, a common culture supplement, directly transforms these toxic gels into cytocompatible materials capable of sustaining cell viability even in the absence of added nutrients. Multistage mass spectrometry showed that at least 40 serum proteins can absorb to a gel's surface through electrostatic attraction ameliorating its toxicity. Further, cell-based studies employing model gels having only bovine serum albumin, fetuin-A, or vitronectin absorbed to the gel surface showed that single protein additives can also be effective depending on the identity of the cell line. Separate studies employing these model gels showed that the mechanism(s) responsible for mitigating apoptosis involve both the pacification of gel surface charge and adsorbed protein-mediated cell signaling events that activate both the PI3/Akt and MAPK/ERK pathways which are known to facilitate resistance to stress-induced apoptosis and overall cell survival.
Collapse
Affiliation(s)
- Yuji Yamada
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Galit Fichman
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Joel P Schneider
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
8
|
Uchida N, Muraoka T. Current Progress in Cross-Linked Peptide Self-Assemblies. Int J Mol Sci 2020; 21:E7577. [PMID: 33066439 PMCID: PMC7589166 DOI: 10.3390/ijms21207577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Peptide-based fibrous supramolecular assemblies represent an emerging class of biomaterials that can realize various bioactivities and structures. Recently, a variety of peptide fibers with attractive functions have been designed together with the discovery of many peptide-based self-assembly units. Cross-linking of the peptide fibers is a key strategy to improve the functions of these materials. The cross-linking of peptide fibers forming three-dimensional networks in a dispersion can lead to changes in physical and chemical properties. Hydrogelation is a typical change caused by cross-linking, which makes it applicable to biomaterials such as cell scaffold materials. Cross-linking methods, which have been conventionally developed using water-soluble covalent polymers, are also useful in supramolecular peptide fibers. In the case of peptide fibers, unique cross-linking strategies can be designed by taking advantage of the functions of amino acids. This review focuses on the current progress in the design of cross-linked peptide fibers and their applications.
Collapse
Affiliation(s)
- Noriyuki Uchida
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
9
|
Mondal S, Das S, Nandi AK. A review on recent advances in polymer and peptide hydrogels. SOFT MATTER 2020; 16:1404-1454. [PMID: 31984400 DOI: 10.1039/c9sm02127b] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this review, we focus on the very recent developments on the use of the stimuli responsive properties of polymer hydrogels for targeted drug delivery, tissue engineering, and biosensing utilizing their different optoelectronic properties. Besides, the stimuli-responsive hydrogels, the conducting polymer hydrogels are discussed, with specific attention to the energy generation and storage behavior of the xerogel derived from the hydrogel. The electronic and ionic conducting gels have been discussed that have applications in various electronic devices, e.g., organic field effect transistors, soft robotics, ionic skins, and sensors. The properties of polymer hybrid gels containing carbon nanomaterials have been exemplified here giving attention to applications in supercapacitors, dye sensitized solar cells, photocurrent switching, etc. Recent trends in the properties and applications of some natural polymer gels to produce thermal and acoustic insulating materials, drug delivery vehicles, self-healing material, tissue engineering, etc., are discussed. Besides the polymer gels, peptide gels of different dipeptides, tripeptides, oligopeptides, polypeptides, cyclic peptides, etc., are discussed, giving attention mainly to biosensing, bioimaging, and drug delivery applications. The properties of peptide-based hybrid hydrogels with polymers, nanoparticles, nucleotides, fullerene, etc., are discussed, giving specific attention to drug delivery, cell culture, bio-sensing, and bioimaging properties. Thus, the present review delineates, in short, the preparation, properties, and applications of different polymer and peptide hydrogels prepared in the past few years.
Collapse
Affiliation(s)
- Sanjoy Mondal
- Polymer Science Unit, School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | | | | |
Collapse
|
10
|
Miller S, Yamada Y, Patel N, Suárez E, Andrews C, Tau S, Luke BT, Cachau RE, Schneider JP. Electrostatically Driven Guanidinium Interaction Domains that Control Hydrogel-Mediated Protein Delivery In Vivo. ACS CENTRAL SCIENCE 2019; 5:1750-1759. [PMID: 31807676 PMCID: PMC6891851 DOI: 10.1021/acscentsci.9b00501] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 05/10/2023]
Abstract
Protein biologics are an important class of drugs, but the necessity for frequent parenteral administration is a major limitation. Drug-delivery materials offer a potential solution, but protein-material adsorption can cause denaturation, which reduces their effectiveness. Here, we describe a new protein delivery platform that limits direct contact between globular protein domains and material matrix, yet from a single subcutaneous administration can be tuned for long-term drug release. The strategy utilizes complementary electrostatic interactions made between a suite of designed interaction domains (IDs), installed onto the terminus of a protein of interest, and a negatively charged self-assembled fibrillar hydrogel. These intermolecular interactions can be easily modulated by choice of ID to control material interaction and desorption energies, which allows regulation of protein release kinetics to fit desired release profiles. Molecular dynamics studies provided a molecular-level understanding of the mechanisms that govern release and identified optimal binding zones on the gel fibrils that facilitate strong ID-material interactions, which are crucial for sustained release of protein. This delivery platform can be easily loaded with cargo, is shear-thin syringe implantable, provides improved protein stability, is capable of a diverse range of in vitro release rates, and most importantly, can accomplish long-term control over in vivo protein delivery.
Collapse
Affiliation(s)
- Stephen
E. Miller
- Chemical
Biology Laboratory and Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yuji Yamada
- Chemical
Biology Laboratory and Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Nimit Patel
- Small Animal Imaging Program and Advanced Biomedical Computational Science Group, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ernesto Suárez
- Small Animal Imaging Program and Advanced Biomedical Computational Science Group, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Caroline Andrews
- Chemical
Biology Laboratory and Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Steven Tau
- Chemical
Biology Laboratory and Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Brian T. Luke
- Small Animal Imaging Program and Advanced Biomedical Computational Science Group, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Raul E. Cachau
- Small Animal Imaging Program and Advanced Biomedical Computational Science Group, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Joel P. Schneider
- Chemical
Biology Laboratory and Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
11
|
Sis MJ, Webber MJ. Drug Delivery with Designed Peptide Assemblies. Trends Pharmacol Sci 2019; 40:747-762. [DOI: 10.1016/j.tips.2019.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022]
|
12
|
Yamada Y, Patel NL, Kalen JD, Schneider JP. Design of a Peptide-Based Electronegative Hydrogel for the Direct Encapsulation, 3D Culturing, in Vivo Syringe-Based Delivery, and Long-Term Tissue Engraftment of Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34688-34697. [PMID: 31448901 PMCID: PMC8274941 DOI: 10.1021/acsami.9b12152] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Soft materials that facilitate the three-dimensional (3D) encapsulation, proliferation, and facile local delivery of cells to targeted tissues will aid cell-based therapies, especially those that depend on the local engraftment of implanted cells. Herein, we develop a negatively charged fibrillar hydrogel based on the de novo-designed self-assembling peptide AcVES3-RGDV. Cells are easily encapsulated during the triggered self-assembly of the peptide leading to gel formation. Self-assembly is induced by adjusting the ionic strength and/or temperature of the solution, while avoiding large changes in pH. The AcVES3-RGDV gel allows cell-material attachment enabling both two-dimensional and 3D cell culture of adherent cells. Gel-cell constructs display shear-thin/recovery rheological properties enabling their syringe-based delivery. In vivo cellular fluorescence as well as tissue resection experiments show that the gel supports the long-term engraftment of cells delivered subcutaneously into mice.
Collapse
Affiliation(s)
- Y. Yamada
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| | - N. L. Patel
- Small Animal Imaging Program, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Incorporation, Frederick, Maryland 21702, United States
| | - J. D. Kalen
- Small Animal Imaging Program, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Incorporation, Frederick, Maryland 21702, United States
| | - J. P. Schneider
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
13
|
Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC, Heemstra JM. Biomolecular Assemblies: Moving from Observation to Predictive Design. Chem Rev 2018; 118:11519-11574. [PMID: 30281290 PMCID: PMC6650774 DOI: 10.1021/acs.chemrev.8b00038] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biomolecular assembly is a key driving force in nearly all life processes, providing structure, information storage, and communication within cells and at the whole organism level. These assembly processes rely on precise interactions between functional groups on nucleic acids, proteins, carbohydrates, and small molecules, and can be fine-tuned to span a range of time, length, and complexity scales. Recognizing the power of these motifs, researchers have sought to emulate and engineer biomolecular assemblies in the laboratory, with goals ranging from modulating cellular function to the creation of new polymeric materials. In most cases, engineering efforts are inspired or informed by understanding the structure and properties of naturally occurring assemblies, which has in turn fueled the development of predictive models that enable computational design of novel assemblies. This Review will focus on selected examples of protein assemblies, highlighting the story arc from initial discovery of an assembly, through initial engineering attempts, toward the ultimate goal of predictive design. The aim of this Review is to highlight areas where significant progress has been made, as well as to outline remaining challenges, as solving these challenges will be the key that unlocks the full power of biomolecules for advances in technology and medicine.
Collapse
Affiliation(s)
- Corey J. Wilson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory of Amyloid Biology & Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - David G. Lynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Anant K. Paravastu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chen Liang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Chien Hsieh
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
14
|
Tong C, Liu T, Saez Talens V, Noteborn WEM, Sharp TH, Hendrix MMRM, Voets IK, Mummery CL, Orlova VV, Kieltyka RE. Squaramide-Based Supramolecular Materials for Three-Dimensional Cell Culture of Human Induced Pluripotent Stem Cells and Their Derivatives. Biomacromolecules 2018; 19:1091-1099. [PMID: 29528623 PMCID: PMC5894061 DOI: 10.1021/acs.biomac.7b01614] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/18/2018] [Indexed: 02/06/2023]
Abstract
Synthetic hydrogel materials can recapitulate the natural cell microenvironment; however, it is equally necessary that the gels maintain cell viability and phenotype while permitting reisolation without stress, especially for use in the stem cell field. Here, we describe a family of synthetically accessible, squaramide-based tripodal supramolecular monomers consisting of a flexible tris(2-aminoethyl)amine (TREN) core that self-assemble into supramolecular polymers and eventually into self-recovering hydrogels. Spectroscopic measurements revealed that monomer aggregation is mainly driven by a combination of hydrogen bonding and hydrophobicity. The self-recovering hydrogels were used to encapsulate NIH 3T3 fibroblasts as well as human-induced pluripotent stem cells (hiPSCs) and their derivatives in 3D. The materials reported here proved cytocompatible for these cell types with maintenance of hiPSCs in their undifferentiated state essential for their subsequent expansion or differentiation into a given cell type and potential for facile release by dilution due to their supramolecular nature.
Collapse
Affiliation(s)
- Ciqing Tong
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Tingxian Liu
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Victorio Saez Talens
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Willem E. M. Noteborn
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Thomas H. Sharp
- Department
of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Marco M. R. M. Hendrix
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MD, Eindhoven, The Netherlands
| | - Ilja K. Voets
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MD, Eindhoven, The Netherlands
| | - Christine L. Mummery
- Department
of Anatomy and Embryology, Leiden University
Medical Center, Leiden University, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Valeria V. Orlova
- Department
of Anatomy and Embryology, Leiden University
Medical Center, Leiden University, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Roxanne E. Kieltyka
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
15
|
Yamada Y, Chowdhury A, Schneider JP, Stetler-Stevenson WG. Macromolecule-Network Electrostatics Controlling Delivery of the Biotherapeutic Cell Modulator TIMP-2. Biomacromolecules 2018; 19:1285-1293. [PMID: 29505725 PMCID: PMC6329387 DOI: 10.1021/acs.biomac.8b00107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue inhibitor of metalloproteinase 2 (TIMP-2) is an endogenous 22 kDa proteinase inhibitor, demonstrating antitumorigenic, antimetastatic and antiangiogenic activities in vitro and in vivo. Recombinant TIMP-2 is currently undergoing preclinical testing in multiple, murine tumor models. Here we report the development of an inert, injectable peptide hydrogel matrix enabling encapsulation and sustained release of TIMP-2. We studied the TIMP-2 release profile from four β-hairpin peptide gels of varying net electrostatic charge. A negatively charged peptide gel (designated AcVES3) enabling encapsulation of 4 mg/mL of TIMP-2, without effects on rheological properties, facilitated the slow sustained release (0.9%/d) of TIMP-2 over 28 d. Released TIMP-2 is structurally intact and maintains the ability to inhibit MMP activity, as well as suppress lung cancer cell proliferation in vitro. These findings suggest that the AcVES3 hydrogel will be useful as an injectable vehicle for systemic delivery of TIMP-2 in vivo for ongoing preclinical development.
Collapse
Affiliation(s)
- Yuji Yamada
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21701, United States
| | - Ananda Chowdhury
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Joel P. Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21701, United States
| | - William G. Stetler-Stevenson
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|