1
|
Alioui S, Langlais M, Ngo R, Habhab K, Dronet S, Jean-Baptiste-Dit-Dominique F, Albertini D, D'Agosto F, Boisson C, Montarnal D. New Thermoplastic Elastomers based on Ethylene-Butadiene-Rubber (EBR) by Switching from Anionic to Coordinative Chain Transfer Polymerization. Angew Chem Int Ed Engl 2025; 64:e202420946. [PMID: 39688278 DOI: 10.1002/anie.202420946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Olefin triblock copolymers based on glassy polystyrene (PS), ethylene butadiene rubber (EBR) and highly crystalline polyethylene (PE) segments were prepared for the first time using a switch strategy from anionic polymerization to coordinative chain transfer (co)polymerization (CCT(co)P). PS chains obtained by anionic polymerization were transmetalated with mesitylmagnesium bromide (BrMgMes) to act as macromolecular chain transfer agents (macro-CTA, PS-MgMes) in the CCTcoP of ethylene and butadiene using {Me2Si(C13H8)2Nd(BH4)2Li(THF)}2 complex (1). Further chain extension by CCTP using pure ethylene in the monomer feed afforded well-defined PS-b-EBR-b-PE triblock copolymers. The structural, rheological and mechanical properties of these materials demonstrate excellent balance between properties and easy processability at moderate temperatures (>150 °C). We demonstrate that such triblock copolymers behave effectively as low-viscosity PS-b-EBR diblock copolymers above the melting point of PE domains and high performance thermoplastic elastomers (TPEs) upon crystallization of PE segments.
Collapse
Affiliation(s)
- Samy Alioui
- Universite Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5128, Laboratoire CP2 M, Equipe PCM, 69616, Villeurbanne, CEDEX, France
| | - Marvin Langlais
- Universite Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5128, Laboratoire CP2 M, Equipe PCM, 69616, Villeurbanne, CEDEX, France
| | - Robert Ngo
- Manufacture Michelin, 23 place Carmes Déchaux, 63000, Clermont-Ferrand, France
| | - Karima Habhab
- Manufacture Michelin, 23 place Carmes Déchaux, 63000, Clermont-Ferrand, France
| | - Séverin Dronet
- Manufacture Michelin, 23 place Carmes Déchaux, 63000, Clermont-Ferrand, France
| | | | - David Albertini
- Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, 69622, Villeurbanne, France
| | - Franck D'Agosto
- Universite Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5128, Laboratoire CP2 M, Equipe PCM, 69616, Villeurbanne, CEDEX, France
| | - Christophe Boisson
- Universite Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5128, Laboratoire CP2 M, Equipe PCM, 69616, Villeurbanne, CEDEX, France
| | - Damien Montarnal
- Universite Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5128, Laboratoire CP2 M, Equipe PCM, 69616, Villeurbanne, CEDEX, France
| |
Collapse
|
2
|
Yu Z, Han XW, Li P, Zhao Y, Zhang X, Sun XL, Gao Y, Zhou YY, Tang Y. Synthesis of Telechelic Isotactic Polypropylenes for Circular Polypropylene-like Materials via Chain Transfer Polymerization. J Am Chem Soc 2025; 147:3931-3936. [PMID: 39868749 DOI: 10.1021/jacs.4c15910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
While synthesizing circular polymers with telechelic polyolefin building blocks recently emerged as a promising strategy for addressing conventional polyethylenes' sustainability challenges, the lack of telechelic iPP (tPP) with sufficient difunctional purity for polycondensation has been limiting the development of circular polypropylenes with iPP-like structures and properties. Here we described a combined approach of coordinative chain transfer polymerization and transition-metal-catalyzed quenching reaction with various acyl chlorides, affording tPPs with a high difunctional ratio (up to ∼99%) and broad end functional group scope. The steric effect of polymeryl-Zn species and the role of Pd catalyst were revealed by DFT. This method also solved the low difunctional ratio challenge for telechelic polyethylenes. Ester-linked iPPs with iPP-like structure and thermomechanical properties and PE/iPP multiblock copolymers were synthesized by the resulting tPPs.
Collapse
Affiliation(s)
- Zonglun Yu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xing-Wang Han
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peizhi Li
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanan Zhao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xun Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiu-Li Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yanshan Gao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - You-Yun Zhou
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Zhou G, Mu H, Jian Z. Accessing Functionalized Ultra-High Molecular Weight Poly(α-olefin)s via Hafnium-Mediated Highly Isospecific Copolymerization. Macromol Rapid Commun 2024; 45:e2400204. [PMID: 38751341 DOI: 10.1002/marc.202400204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/10/2024] [Indexed: 05/28/2024]
Abstract
Inspired by the favorable impact of heteroatom-containing groups in phenoxy-imine titanium and late transition metal catalysts, a series of novel pyridylamido hafnium catalysts bearing ─OMe (Cat-OMe), ─CF3 (Cat-CF3), and ─C6F5 (Cat-C6F5) substituents are designed and synthesized. Together with the established hafnium catalysts Cat-H and Cat-iPr by Dow/Symyx, these catalysts are applied in the polymerization of α-olefins, including 1-hexene, 1-octene, and 4M1P, as well as in the copolymerization of these α-olefins with a specifically designed polar monomer. The enhancement of polymer molecular weight derived from catalyst modification and the incorporation of polar monomers is discussed in detail. Notably, the new catalysts are all highly active for α-olefins polymerization, with catalyst Cat-CF3 producing isotactic polymers with the highest molecular weight (Mw = 1649 kg mol-1); in copolymerization with polar monomers, catalyst Cat-OMe yields isotactic copolymer with the highest molecular weight (Mw = 2990 kg mol-1). Interestingly, catalyst Cat-C6F5 bearing a ─C6F5 group in the N-aryl moiety gives rise to poly(α-olefin) with reduced stereoselectivity. The findings of this study underscore the potential of heteroatom-containing groups in the development of early transition metal catalysts and the synthesis of polymer with novel structures.
Collapse
Affiliation(s)
- Guanglin Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hongliang Mu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
4
|
Mundil R, Bravo C, Merle N, Zinck P. Coordinative Chain Transfer and Chain Shuttling Polymerization. Chem Rev 2024; 124:210-244. [PMID: 38085864 DOI: 10.1021/acs.chemrev.3c00440] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Coordinative chain transfer polymerization, CCTP, is a degenerative chain transfer polymerization process that has a wide range of applications. It allows a highly controlled synthesis of polyolefins, stereoregular polydienes, and stereoregular polystyrene, including (stereo)block as well as statistical copolymers thereof. It also shows a green character by allowing catalyst economy during the synthesis of such polymers. CCTP notably allows the end functionalization of both the commodity and stereoregular specialty polymers aforementionned, control of the composition of statistical copolymers without adjusting the feed, and quantitative formation of 1-alkenes from ethene. A one-pot one-step synthesis of the original multiblock microstructures and architectures by chain shuttling polymerization (CSP) is also an asset of CCTP. This methodology takes advantage of the simultaneous presence of two catalysts of different selectivity toward comonomers that produce blocks of different composition/microstructure, while still allowing the chain transfer. This affords the production of highly performant functional polymers, such as thermoplastic elastomers and adhesives, among others. This approach has been extended to cyclic esters' and ethers' ring-opening polymerization, providing new types of multiblock microstructure. The present Review provides the state of the art in the field with a focus on the last 10 years.
Collapse
Affiliation(s)
- Robert Mundil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova, 2030, 128 40 Prague 2, Czech Republic
| | - Catarina Bravo
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Nicolas Merle
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Philippe Zinck
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| |
Collapse
|
5
|
Langlais M, Baulu N, Dronet S, Dire C, Jean-Baptiste-Dit-Dominique F, Albertini D, D'Agosto F, Montarnal D, Boisson C. Multiblock Copolymers Based on Highly Crystalline Polyethylene and Soft Poly(ethylene-co-butadiene) Segments: Towards Polyolefin Thermoplastic Elastomers. Angew Chem Int Ed Engl 2023; 62:e202310437. [PMID: 37642586 DOI: 10.1002/anie.202310437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
Block copolymers based on polyethylene (PE) and ethylene butadiene rubber (EBR) were obtained by successive controlled coordinative chain transfer polymerization (CCTP) of a mixture of ethylene and butadiene (80/20) and pure ethylene. EBR-b-PE diblock copolymers were synthesized using the {Me2 Si(C13 H8 )2 Nd(BH4 )2 Li(THF)}2 complex in combination with n-butyl,n-octyl magnesium (BOMAG) used as both the alkylating and chain transfer agent (CTA). Triblock and multiblock copolymers featuring highly semi-crystalline PE hard segments and soft EBR segments were further obtained by the development of a bimetallic CTA, the pentanediyl-1,5-di(magnesium bromide) (PDMB). These new block copolymers undergo crystallization-driven organization into lamellar structures and exhibit a variety of mechanical properties, including excellent extensibility and elastic recovery in the case of triblock and multiblock copolymers.
Collapse
Affiliation(s)
- Marvin Langlais
- Université Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5128, Laboratoire CP2M, Equipe PCM, 69616, Villeurbanne, France
| | - Nicolas Baulu
- Université Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5128, Laboratoire CP2M, Equipe PCM, 69616, Villeurbanne, France
- Manufacture Michelin, 23 place Carmes Déchaux, 63000, Clermont-Ferrand, France
| | - Séverin Dronet
- Manufacture Michelin, 23 place Carmes Déchaux, 63000, Clermont-Ferrand, France
| | - Charlotte Dire
- Manufacture Michelin, 23 place Carmes Déchaux, 63000, Clermont-Ferrand, France
| | | | - David Albertini
- Université Claude Bernard Lyon 1, INSA Lyon, CNRS UMR 5270, Institut des Nanotechnologies de Lyon, 69616, Villeurbanne, France
| | - Franck D'Agosto
- Université Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5128, Laboratoire CP2M, Equipe PCM, 69616, Villeurbanne, France
| | - Damien Montarnal
- Université Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5128, Laboratoire CP2M, Equipe PCM, 69616, Villeurbanne, France
| | - Christophe Boisson
- Université Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5128, Laboratoire CP2M, Equipe PCM, 69616, Villeurbanne, France
| |
Collapse
|
6
|
Burkey AA, Kotula AP, Snyder CR, Orski SV, Beers KL. Selective deuteration along a polyethylene chain: Differentiating conformation segment by segment. Macromolecules 2023; 56:10.1021/acs.macromol.3c01560. [PMID: 38841360 PMCID: PMC11151874 DOI: 10.1021/acs.macromol.3c01560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
To improve the circularity and performance of polyolefin materials, recent innovations have enabled the synthesis of polyolefins with new structural features such as cleavable breakpoints, functional chain ends, and unique comonomers. As new polyolefin structures become synthetically accessible, fundamental understanding of the effects of structural features on polymer (re)processing and mechanical performance is increasingly important. While bulk material properties are readily measured through conventional thermal or mechanical techniques, selective measurement of local material properties near structural defects is a major characterization challenge. Here, we synthesized a series of polyethylenes with selectively deuterated segments using a polyhomologation approach and employed vibrational spectroscopy to evaluate crystallization and melting of chain segments near features of interest (e.g., end groups, chain centers, and mid-chain structural defects). Chain-end functionality and defects were observed to strongly influence crystallinity of adjacent deuterated chain segments. Additionally, chain-end crystallinity was observed to have different molar mass dependence than mid-chain crystallinity. The synthesis and spectroscopy techniques demonstrated here can be applied to range of previously inaccessible deuterated polyethylene structures to provide direct insight into local crystallization behavior.
Collapse
Affiliation(s)
- Aaron A Burkey
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Anthony P Kotula
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Chad R Snyder
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Sara V Orski
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Kathryn L Beers
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| |
Collapse
|
7
|
Park JY, Ko JH, Lee HJ, Park JH, Lee J, Sa S, Shin EJ, Lee BY. Up-Scale Synthesis of p-(CH 2=CH)C 6H 4CH 2CH 2CH 2Cl and p-ClC 6H 4SiR 3 by CuCN-Catalyzed Coupling Reactions of Grignard Reagents with Organic Halides. ACS OMEGA 2022; 7:46849-46858. [PMID: 36570214 PMCID: PMC9773938 DOI: 10.1021/acsomega.2c05951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Grignard reagents featuring carbanion characteristics are mostly unreactive toward alkyl halides and require a catalyst for the coupling reaction. With the need to prepare p-(CH2=CH)C6H4CH2CH2CH2Cl on a large scale, the coupling reaction of p-(CH2=CH)C6H4MgCl with BrCH2CH2CH2Cl was attempted to screen the catalysts, and CuCN was determined to be the best catalyst affording the desired compound in 80% yield with no formation of Wurtz coupling side product CH2=CHC6H4-C6H4CH=CH2. The p-(CH2=CH)C6H4Cu(CN)MgCl species was proposed as an intermediate based on the X-ray structure of PhCu(CN)Mg(THF)4Cl. p-ClC6H4MgCl did not react with sterically encumbered R3SiCl (R = n-Bu or n-octyl). However, the reaction took place with the addition of 3 mol % CuCN catalyst, affording the desired compound p-ClC6H4SiR3. The structures of p-(CH2=CH)C6H4CH2CH2CH2MgCl and p-ClC6H4MgCl were also elucidated, which existed as an aggregate with MgCl2, suggesting that some portion of the Grignard reagents were possibly lost in the coupling reaction due to coprecipitation with the byproduct MgCl2. R3SiCl (R = n-Bu or n-octyl) was also prepared easily and economically with no formation of R4Si when SiCl4 was reacted with 4 equiv of RMgCl. Using the developed syntheses, [p-(CH2=CH)C6H4CH2CH2CH2]2Zn and iPrN[P(C6H4-p-SiR3)2]2, which are potentially useful compounds for the production of PS-block-PO-block-PS and 1-octene, respectively, were efficiently synthesized with substantial cost reductions.
Collapse
Affiliation(s)
- Ju Yong Park
- Department
of Molecular Science and Technology, Ajou
University, Suwon16499, South Korea
| | - Ji Hyeong Ko
- Department
of Molecular Science and Technology, Ajou
University, Suwon16499, South Korea
| | - Hyun Ju Lee
- Department
of Molecular Science and Technology, Ajou
University, Suwon16499, South Korea
| | - Jun Hyeong Park
- Department
of Molecular Science and Technology, Ajou
University, Suwon16499, South Korea
| | - Junseong Lee
- Department
of Chemistry, Chonnam National University, Gwangju61186, South Korea
| | | | | | - Bun Yeoul Lee
- Department
of Molecular Science and Technology, Ajou
University, Suwon16499, South Korea
| |
Collapse
|
8
|
Gao H, Lu X, Chen S, Du B, Yin X, Kang Y, Zhang K, Liu C, Pan L, Wang B, Ma Z, Li Y. Preparation of Well-Controlled Isotactic Polypropylene-Based Block Copolymers with Superior Physical Performance via Efficient Coordinative Chain Transfer Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huan Gao
- Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Xu Lu
- Petrochemical Research Institute, Petro China Company Limited, Beijing 102206, P. R. China
| | - Shangtao Chen
- Petrochemical Research Institute, Petro China Company Limited, Beijing 102206, P. R. China
| | - Bin Du
- Petrochemical Research Institute, Petro China Company Limited, Beijing 102206, P. R. China
| | - Xiao Yin
- Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yuze Kang
- Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Kunyu Zhang
- Petrochemical Research Institute, Petro China Company Limited, Beijing 102206, P. R. China
| | - Chao Liu
- Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Li Pan
- Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Bin Wang
- Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Zhe Ma
- Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
9
|
Burkey AA, Fischbach DM, Wentz CM, Beers KL, Sita LR. Highly Versatile Strategy for the Production of Telechelic Polyolefins. ACS Macro Lett 2022; 11:402-409. [PMID: 35575371 DOI: 10.1021/acsmacrolett.2c00108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A general and versatile synthetic strategy for producing practical quantities of a wide range of phenyl-group-terminated hetero- and homotelechelic semicrystalline polyethenes and amorphous atactic and semicrystalline isotactic poly(α-olefins) is reported. The phenyl groups serve as synthons for functionalities of additional classes of telechelic polyolefins that can be "unmasked" through simple high yielding postpolymerization reactions. A demonstration of the value of these materials as building blocks for structural classes of polyolefin-based synthetic polymers was provided by syntheses of well-defined polyolefin-polyester di- and triblock copolymers that were shown to adopt microphase-segregated nanostructured mesophases in the condensed phase.
Collapse
Affiliation(s)
- Aaron A. Burkey
- Laboratory for Applied Catalyst Science and Technology, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Danyon M. Fischbach
- Laboratory for Applied Catalyst Science and Technology, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Charlotte M. Wentz
- Laboratory for Applied Catalyst Science and Technology, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Kathryn L. Beers
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Lawrence R. Sita
- Laboratory for Applied Catalyst Science and Technology, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
10
|
Gao H, Chen S, Du B, Dai Z, Lu X, Zhang K, Pan L, Li Y, Li Y. Cyclic olefin copolymers containing both linear polyethylene and poly(ethylene- co-norbornene) segments prepared from chain shuttling copolymerization of ethylene and norbornene. Polym Chem 2022. [DOI: 10.1039/d1py01251g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of novel HDPE/COC multiblock copolymers have been effectively obtained via chain shuttling copolymerization of ethylene and NBE. These promising copolymers exhibit excellent clarity, high heat resistance and balanced mechanical properties.
Collapse
Affiliation(s)
- Huan Gao
- Tianjin Key Lab of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shangtao Chen
- Synthetic Resin Laboratory, PetroChina Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Bin Du
- Synthetic Resin Laboratory, PetroChina Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Zhenyu Dai
- Advanced Materials Research Center, Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Xu Lu
- Advanced Materials Research Center, Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Kunyu Zhang
- Advanced Materials Research Center, Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Li Pan
- Tianjin Key Lab of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yang Li
- Advanced Materials Research Center, Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Yuesheng Li
- Tianjin Key Lab of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science & Engineering of Tianjin, Tianjin 300072, China
| |
Collapse
|
11
|
Baulu N, Poradowski MN, Verrieux L, Thuilliez J, Jean-Baptiste-dit-Dominique F, Perrin L, D'Agosto F, Boisson C. Design of selective divalent chain transfer agent for coordinative chain transfer polymerization of ethylene and its copolymerization with butadiene. Polym Chem 2022. [DOI: 10.1039/d2py00155a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PhMg(CH2)5MgPh and MesMg(CH2)5MgMes – divalent bis-metalated chain transfer agents (CTA) – were designed, synthesized and implemented in the polymerization of ethylene or the copolymerization of ethylene with butadiene mediated by...
Collapse
|
12
|
Wallace MA, Sita LR. Temporal Control over Two‐ and Three‐State Living Coordinative Chain Transfer Polymerization for Modulating the Molecular Weight Distribution Profile of Polyolefins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mark A. Wallace
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Lawrence R. Sita
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| |
Collapse
|
13
|
Wallace MA, Sita LR. Temporal Control over Two- and Three-State Living Coordinative Chain Transfer Polymerization for Modulating the Molecular Weight Distribution Profile of Polyolefins. Angew Chem Int Ed Engl 2021; 60:19671-19678. [PMID: 34196076 DOI: 10.1002/anie.202105937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/27/2021] [Indexed: 11/12/2022]
Abstract
A highly versatile new strategy for manipulating the molecular weight profiles, including breadth, asymmetry (skewness) and modal nature (mono-, bi-, and multimodal), of a variety of different polyolefins is reported. It involves temporal control over two- and three-state living coordinative chain transfer polymerization (LCCTP) of olefins in a programmable way. By changing the identity of the R' groups of the chain transfer agent, ER'n , with time, different populations of chains within a bi- or multimodal polyolefin product can be selectively tagged with different end-groups. By changing the nature of the main-group metal of the CTA, programmed manipulation of the relative magnitudes of the dispersities of the different maxima that make up the final MWD profile can be achieved. This strategy can be implemented with existing LCCTP materials and conventional reactor methods to provide access to scalable and practical quantities of an unlimited array of new polyolefin materials.
Collapse
Affiliation(s)
- Mark A Wallace
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Lawrence R Sita
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
14
|
Wallace MA, Burkey AA, Sita LR. Phenyl-Terminated Polyolefins via Living Coordinative Chain Transfer Polymerization with ZnPh 2 as a Chain Transfer Agent. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mark A. Wallace
- Laboratory for Applied Catalyst Science and Technology, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Aaron A. Burkey
- Laboratory for Applied Catalyst Science and Technology, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Lawrence R. Sita
- Laboratory for Applied Catalyst Science and Technology, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
15
|
Uchiyama M, Osumi M, Satoh K, Kamigaito M. Hybridization of Step-/Chain-Growth and Radical/Cationic Polymerizations Using Thioacetals as Key Components for Triblock, Periodic and Random Multiblock Copolymers with Thermoresponsiveness. Macromol Rapid Commun 2021; 42:e2100192. [PMID: 33945193 DOI: 10.1002/marc.202100192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/24/2021] [Indexed: 11/11/2022]
Abstract
A novel strategy for synthesizing a series of multiblock copolymers is developed by combining radical/cationic step-growth polymerizations of dithiols and divinyl ethers and chain-growth cationic degenerative chain-transfer (DT) polymerizations of vinyl ethers using thioacetals as key components. The combination of radical step-growth polymerization and a cationic thiol-ene reaction or cationic step-growth polymerization enables the synthesis of a series of macro chain-transfer agents (CTAs) composed of poly(thioether) and thioacetal groups at different positions. The resulting products are 1) bifunctional macro CTAs with thioacetal groups at both chain ends, 2) periodic macro CTAs periodically having thioacetal groups in the main chain, and 3) random macro CTAs randomly having thioacetal groups in the main chain. Subsequently, the obtained macro CTAs are used for chain-growth cationic DT polymerization of methoxyethyl vinyl ether (MOVE) to result in 1) triblock, 2) periodic, and 3) random multiblock copolymers consisting of poly(thioether) and poly(MOVE) segments. All these triblock and multiblock copolymers composed of hydrophobic poly(thioether) and hydrophilic poly(MOVE) segments show an amphiphilic tendency to form characteristic micelles in aqueous solutions. In addition, due to the thermoresponsive poly(MOVE) segments, the obtained copolymers exhibit lower critical solution temperatures that depend on the segment sequences and lengths.
Collapse
Affiliation(s)
- Mineto Uchiyama
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Masahiro Osumi
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Kotaro Satoh
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H120 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
16
|
Zanchin G, Leone G. Polyolefin thermoplastic elastomers from polymerization catalysis: Advantages, pitfalls and future challenges. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2020.101342] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Abstract
A comprehensive review of all the methodologies developed for the synthesis of telechelic polyolefins is reported.
Collapse
Affiliation(s)
- Tianwei Yan
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, USA
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
18
|
Lee JC, Park KL, Bae SM, Lee HJ, Baek JW, Lee J, Sa S, Shin EJ, Lee KS, Lee BY. Styrene Moiety-Carrying Diorganozinc Compound Preparation for Polystyrene-Poly(ethylene-co-1-hexene)-Polystyrene Triblock Copolymer Production. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jong Chul Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Kyung Lee Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Sung Moon Bae
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Hyun Ju Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Jun Won Baek
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, South Korea
| | - Seokpil Sa
- LG Chem Ltd., Daejeon 34122, South Korea
| | | | - Ki Soo Lee
- LG Chem Ltd., Daejeon 34122, South Korea
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| |
Collapse
|
19
|
Park KL, Baek JW, Moon SH, Bae SM, Lee JC, Lee J, Jeong MS, Lee BY. Preparation of Pyridylamido Hafnium Complexes for Coordinative Chain Transfer Polymerization. Polymers (Basel) 2020; 12:E1100. [PMID: 32403453 PMCID: PMC7285347 DOI: 10.3390/polym12051100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 12/04/2022] Open
Abstract
The pyridylamido hafnium complex (I) discovered at Dow is a flagship catalyst among postmetallocenes, which are used in the polyolefin industry for PO-chain growth from a chain transfer agent, dialkylzinc. In the present work, with the aim to block a possible deactivation process in prototype compound I, the corresponding derivatives were prepared. A series of pyridylamido Hf complexes were prepared by replacing the 2,6-diisopropylphenylamido part in I with various 2,6-R2C6H3N-moieties (R = cycloheptyl, cyclohexyl, cyclopentyl, 3-pentyl, ethyl, or Ph) or by replacing 2-iPrC6H4C(H)- in I with the simple PhC(H)-moiety. The isopropyl substituent in the 2-iPrC6H4C(H)-moiety influences not only the geometry of the structures (revealed by X-ray crystallography), but also catalytic performance. In the complexes bearing the 2-iPrC6H4C(H)-moiety, the chelation framework forms a plane; however, this framework is distorted in the complexes containing the PhC(H)-moiety. The ability to incorporate α-olefin decreased upon replacing 2-iPrC6H4C(H)-with the PhC(H)-moiety. The complexes carrying the 2,6-di(cycloheptyl)phenylamido or 2,6-di(cyclohexyl)phenylamido moiety (replacing the 2,6-diisopropylphenylamido part in I) showed somewhat higher activity with greater longevity than did prototype catalyst I.
Collapse
Affiliation(s)
- Kyung Lee Park
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; (K.L.P.); (J.W.B.); (S.H.M.); (S.M.B.); (J.C.L.)
| | - Jun Won Baek
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; (K.L.P.); (J.W.B.); (S.H.M.); (S.M.B.); (J.C.L.)
| | - Seung Hyun Moon
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; (K.L.P.); (J.W.B.); (S.H.M.); (S.M.B.); (J.C.L.)
| | - Sung Moon Bae
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; (K.L.P.); (J.W.B.); (S.H.M.); (S.M.B.); (J.C.L.)
| | - Jong Chul Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; (K.L.P.); (J.W.B.); (S.H.M.); (S.M.B.); (J.C.L.)
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, Gwangju 500-757, Korea;
| | - Myong Sun Jeong
- Intellectual Property Education Center, Anyang University, Anyang 708-113, Korea;
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; (K.L.P.); (J.W.B.); (S.H.M.); (S.M.B.); (J.C.L.)
| |
Collapse
|
20
|
Kim TJ, Baek JW, Moon SH, Lee HJ, Park KL, Bae SM, Lee JC, Lee PC, Lee BY. Polystyrene Chain Growth Initiated from Dialkylzinc for Synthesis of Polyolefin-Polystyrene Block Copolymers. Polymers (Basel) 2020; 12:E537. [PMID: 32131422 PMCID: PMC7182881 DOI: 10.3390/polym12030537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 11/30/2022] Open
Abstract
Polyolefins (POs) are the most abundant polymers. However, synthesis of PO-based block copolymers has only rarely been achieved. We aimed to synthesize various PO-based block copolymers by coordinative chain transfer polymerization (CCTP) followed by anionic polymerization in one-pot via conversion of the CCTP product (polyolefinyl)2Zn to polyolefinyl-Li. The addition of 2 equiv t-BuLi to (1-octyl)2Zn (a model compound of (polyolefinyl)2Zn) and selective removal or decomposition of (tBu)2Zn by evacuation or heating at 130 °C afforded 1-octyl-Li. Attempts to convert (polyolefinyl)2Zn to polyolefinyl-Li were unsuccessful. However, polystyrene (PS) chains were efficiently grown from (polyolefinyl)2Zn; the addition of styrene monomers after treatment with t-BuLi and pentamethyldiethylenetriamine (PMDTA) in the presence of residual olefin monomers afforded PO-block-PSs. Organolithium species that might be generated in the pot of t-BuLi, PMDTA, and olefin monomers, i.e., [Me2NCH2CH2N(Me)CH2CH2N(Me)CH2Li, Me2NCH2CH2N(Me)Li·(PMDTA), pentylallyl-Li⋅(PMDTA)], as well as PhLi⋅(PMDTA), were screened as initiators to grow PS chains from (1-hexyl)2Zn, as well as from (polyolefinyl)2Zn. Pentylallyl-Li⋅(PMDTA) was the best initiator. The Mn values increased substantially after the styrene polymerization with some generation of homo-PSs (27-29%). The Mn values of the extracted homo-PS suggested that PS chains were grown mainly from polyolefinyl groups in [(polyolefinyl)2(pentylallyl)Zn]-[Li⋅(PMDTA)]+ formed by pentylallyl-Li⋅(PMDTA) acting onto (polyolefinyl)2Zn.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; (T.J.K.); (J.W.B.); (S.H.M.); (H.J.L.); (K.L.P.); (S.M.B.); (J.C.L.); (P.C.L.)
| |
Collapse
|
21
|
Khedaioui D, Burcher B, Gajan D, Montarnal D, D'Agosto F, Boisson C. One-pot syntheses of heterotelechelic α-vinyl,ω-methoxysilane polyethylenes and condensation into comb-like and star-like polymers with high chain end functionality. Polym Chem 2020. [DOI: 10.1039/d0py00638f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystalline and functional comb-like and star-like polyethylene architectures.
Collapse
Affiliation(s)
| | | | - David Gajan
- Institut des Sciences Analytiques UMR 5280 (CNRS/Université Lyon1/ENS Lyon)
- Université Lyon
- Centre de RMN à Très Hauts Champs
- 69100 Villeurbanne
- France
| | | | - Franck D'Agosto
- Univ Lyon
- Université Claude Bernard Lyon 1
- CPE Lyon
- CNRS
- UMR 5265
| | | |
Collapse
|
22
|
Lee HJ, Baek JW, Kim TJ, Park HS, Moon SH, Park KL, Bae SM, Park J, Lee BY. Synthesis of Long-Chain Branched Polyolefins by Coordinative Chain Transfer Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01705] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Ouyang Y, Zhang Z, Xi Q, Jiang P, Ren W, Li N, Zhou J, Chen J. Effect of boundary chain folding on thermal conductivity of lamellar amorphous polyethylene. RSC Adv 2019; 9:33549-33557. [PMID: 35529136 PMCID: PMC9073277 DOI: 10.1039/c9ra07563a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
Thermal transport properties of amorphous polymers depend significantly on the chain morphology, and boundary chain folding is a common phenomenon in bulk or lamellar polymer materials. In this work, by using molecular dynamics simulations, we study thermal conductivity of lamellar amorphous polyethylene (LAPE) with varying chain length (L 0). For a short L 0 without boundary chain folding, thermal conductivity of LAPE is homogeneous along the chain length direction. In contrast, boundary chain folding takes place for large L 0, and the local thermal conductivity at the boundary is notably lower than that of the central region, indicating inhomogeneous thermal transport in LAPE. By analysing the chain morphology, we reveal that the boundary chain folding causes the reduction of both the orientation order parameter along the heat flow direction and the radius of gyration, leading to the reduced local thermal conductivity at the boundary. Further vibrational spectrum analysis reveals that the boundary chain folding shifts the vibrational spectrum to the lower frequency, and suppresses the transmission coefficient for both C-C vibration and C-H vibration. Our study suggests that the boundary chain folding is an important factor for polymers to achieve desirable thermal conductivity for plastic heat exchangers and electronic packaging applications.
Collapse
Affiliation(s)
- Yulou Ouyang
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab for Nanophononics, School of Physics Science and Engineering, Tongji University Shanghai 200092 People's Republic of China
| | - Zhongwei Zhang
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab for Nanophononics, School of Physics Science and Engineering, Tongji University Shanghai 200092 People's Republic of China
| | - Qing Xi
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab for Nanophononics, School of Physics Science and Engineering, Tongji University Shanghai 200092 People's Republic of China
| | - Pengfei Jiang
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab for Nanophononics, School of Physics Science and Engineering, Tongji University Shanghai 200092 People's Republic of China
| | - Weijun Ren
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab for Nanophononics, School of Physics Science and Engineering, Tongji University Shanghai 200092 People's Republic of China
| | - Nianbei Li
- Institute of Systems Science and Department of Physics, College of Information Science and Engineering, Huaqiao University Xiamen 361021 People's Republic of China
| | - Jun Zhou
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab for Nanophononics, School of Physics Science and Engineering, Tongji University Shanghai 200092 People's Republic of China
| | - Jie Chen
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab for Nanophononics, School of Physics Science and Engineering, Tongji University Shanghai 200092 People's Republic of China
| |
Collapse
|
24
|
Preparation of Half- and Post-Metallocene Hafnium Complexes with Tetrahydroquinoline and Tetrahydrophenanthroline Frameworks for Olefin Polymerization. Polymers (Basel) 2019; 11:polym11071093. [PMID: 31252659 PMCID: PMC6680767 DOI: 10.3390/polym11071093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/27/2023] Open
Abstract
Hafnium complexes have drawn attention for their application as post-metallocene catalysts with unique performance in olefin polymerization. In this work, a series of half-metallocene HfMe2 complexes, bearing a tetrahydroquinoline framework, as well as a series of [Namido,N,Caryl]HfMe2-type post-metallocene complexes, bearing a tetrahydrophenanthroline framework, were prepared; the structures of the prepared Hf complexes were unambiguously confirmed by X-ray crystallography. When the prepared complexes were reacted with anhydrous [(C18H37)2N(H)Me]+[B(C6F5)4]−, desired ion-pair complexes, in which (C18H37)2NMe coordinated to the Hf center, were cleanly afforded. The activated complexes generated from the half-metallocene complexes were inactive for the copolymerization of ethylene/propylene, while those generated from post-metallocene complexes were active. Complex bearing bulky isopropyl substituents (12) exhibited the highest activity. However, the activity was approximately half that of the prototype pyridylamido-Hf Dow catalyst. The comonomer incorporation capability was also inferior to that of the pyridylamido-Hf Dow catalyst. However, 12 performed well in the coordinative chain transfer polymerization performed in the presence of (octyl)2Zn, converting all the fed (octyl)2Zn to (polyolefinyl)2Zn with controlled lengths of the polyolefinyl chain.
Collapse
|
25
|
Kwon SJ, Baek JW, Lee HJ, Kim TJ, Ryu JY, Lee J, Shin EJ, Lee KS, Lee BY. Preparation of Pincer Hafnium Complexes for Olefin Polymerization. Molecules 2019; 24:E1676. [PMID: 31035708 PMCID: PMC6540127 DOI: 10.3390/molecules24091676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 11/17/2022] Open
Abstract
Pincer-type [Cnaphthyl, Npyridine, Namido]HfMe2 complex is a flagship among the post-metallocene catalysts. In this work, various pincer-type Hf-complexes were prepared for olefin polymerization. Pincer-type [Namido, Npyridine, Namido]HfMe2 complexes were prepared by reacting in situ generated HfMe4 with the corresponding ligand precursors, and the structure of a complex bearing 2,6-Et2C6H3Namido moieties was confirmed by X-ray crystallography. When the ligand precursors of [(CH3)R2Si-C5H3N-C(H)PhN(H)Ar (R = Me or Ph, Ar = 2,6-diisopropylphenyl) were treated with in situ generated HfMe4, pincer-type [Csilylmethyl, Npyridine, Namido]HfMe2 complexes were afforded by formation of Hf-CH2Si bond. Pincer-type [Cnaphthyl, Sthiophene, Namido]HfMe2 complex, where the pyridine moiety in the flagship catalyst was replaced with a thiophene unit, was not generated when the corresponding ligand precursor was treated with HfMe4. Instead, the [Sthiophene, Namido]HfMe3-type complex was obtained with no formation of the Hf-Cnaphthyl bond. A series of pincer-type [Cnaphthyl, Npyridine, Nalkylamido]HfMe2 complexes was prepared where the arylamido moiety in the flagship catalyst was replaced with alkylamido moieties (alkyl = iPr, cyclohexyl, tBu, adamantyl). Structures of the complexes bearing isopropylamido and adamantylamido moieties were confirmed by X-ray crystallography. Most of the complexes cleanly generated the desired ion-pair complexes when treated with an equivalent amount of [(C18H37)2N(H)Me]+[B(C6F5)4]-, which showed negligible activity in olefin polymerization. Some complexes bearing bulky substituents showed moderate activities, even though the desired ion-pair complexes were not cleanly afforded.
Collapse
Affiliation(s)
- Su Jin Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Jun Won Baek
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Hyun Ju Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Tae Jin Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Ji Yeon Ryu
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea.
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea.
| | - Eun Ji Shin
- LG Chem, Ltd., 188, Munji-ro, Yuseong-gu Daejeon 305-738, Korea.
| | - Ki Soo Lee
- LG Chem, Ltd., 188, Munji-ro, Yuseong-gu Daejeon 305-738, Korea.
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
26
|
Kamigaito M, Satoh K, Uchiyama M. Degenerative chain‐transfer process: Controlling all chain‐growth polymerizations and enabling novel monomer sequences. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29257] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Masami Kamigaito
- Department of Molecular and Macromolecular ChemistryGraduate School of Engineering, Nagoya University Furo‐cho, Chikusa‐ku Nagoya 464‐8603 Japan
| | - Kotaro Satoh
- Department of Molecular and Macromolecular ChemistryGraduate School of Engineering, Nagoya University Furo‐cho, Chikusa‐ku Nagoya 464‐8603 Japan
| | - Mineto Uchiyama
- Department of Molecular and Macromolecular ChemistryGraduate School of Engineering, Nagoya University Furo‐cho, Chikusa‐ku Nagoya 464‐8603 Japan
| |
Collapse
|
27
|
Kim SD, Kim TJ, Kwon SJ, Kim TH, Baek JW, Park HS, Lee HJ, Lee BY. Peroxide-Mediated Alkyl–Alkyl Coupling of Dialkylzinc: A Useful Tool for Synthesis of ABA-Type Olefin Triblock Copolymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sung Dong Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Tae Jin Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Su Jin Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Tae Hee Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Jun Won Baek
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Hee Soo Park
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Hyun Ju Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| |
Collapse
|
28
|
Polystyrene Chain Growth from Di-End-Functional Polyolefins for Polystyrene-Polyolefin-Polystyrene Block Copolymers. Polymers (Basel) 2017; 9:polym9100481. [PMID: 30965784 PMCID: PMC6418507 DOI: 10.3390/polym9100481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/19/2017] [Accepted: 09/29/2017] [Indexed: 01/14/2023] Open
Abstract
Triblock copolymers of polystyrene (PS) and a polyolefin (PO), e.g., PS-block-poly(ethylene-co-1-butene)-block-PS (SEBS), are attractive materials for use as thermoplastic elastomers and are produced commercially by a two-step process that involves the costly hydrogenation of PS-block-polybutadiene-block-PS. We herein report a one-pot strategy for attaching PS chains to both ends of PO chains to construct PS-block-PO-block-PS directly from olefin and styrene monomers. Dialkylzinc compound containing styrene moieties ((CH₂=CHC₆H₄CH₂CH₂)₂Zn) was prepared, from which poly(ethylene-co-propylene) chains were grown via "coordinative chain transfer polymerization" using the pyridylaminohafnium catalyst to afford di-end functional PO chains functionalized with styrene and Zn moieties. Subsequently, PS chains were attached at both ends of the PO chains by introduction of styrene monomers in addition to the anionic initiator Me₃SiCH₂Li·(pmdeta) (pmdeta = pentamethyldiethylenetriamine). We found that the fraction of the extracted PS homopolymer was low (~20%) and that molecular weights were evidently increased after the styrene polymerization (ΔMn = 27⁻54 kDa). Transmission electron microscopy showed spherical and wormlike PS domains measuring several tens of nm segregated within the PO matrix. Optimal tensile properties were observed for the sample containing a propylene mole fraction of 0.25 and a styrene content of 33%. Finally, in the cyclic tensile test, the prepared copolymers exhibited thermoplastic elastomeric properties with no breakage up over 10 cycles, which is comparable to the behavior of commercial-grade SEBS.
Collapse
|