1
|
Zhou L, He K, Kang SM, Zhou XY, Zou H, Liu N, Wu ZQ. Photoswitchable Enantioselective and Helix-Sense Controlled Living Polymerization. Angew Chem Int Ed Engl 2023; 62:e202310105. [PMID: 37957131 DOI: 10.1002/anie.202310105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
A pair of enantiomeric photoswitchable PdII catalysts, alkyne-PdII /LR-azo and alkyne-PdII /LS-azo , were prepared via the coordination of alkyne-PdII and azobenzene-modified phosphine ligands LR-azo and LS-azo . Owing to the cis-trans photoisomerization of the azobenzene moiety, alkyne-PdII /LR-azo and alkyne-PdII /LS-azo exhibited different polymerization activities, helix-sense selectivities, and enantioselectivities during the polymerization of isocyanide monomers under irradiation of different wavelength lights. Furthermore, the achiral isocyanide monomer A-1 could be polymerized efficiently using alkyne-PdII /LR-azo under dark condition in a living/controlled manner. Further, it generated single right-handed helical poly-A-1m (LR-azo ), confirmed by the circular dichroism spectra and atomic force microscopy images. However, the polymerization of A-1 almost could not be initiated under 420 nm light in identical conditions of dark condition. Moreover, the photoswitchable catalyst alkyne-PdII /LR-azo exhibited high enantioselectivity for the polymerization of the racemates of L-1 and D-1, respectively. D-1 was polymerized preferentially under dark condition with a D-1/L-1 rate ratio of 70, yielding single right-handed polyisocyanides. Additionally, reversible enantioselectivity was observed under 420 nm light using alkyne-PdII /LR-azo , and the calculated polymerization rate ratio of L-1/D-1 was 57 because of the isomerization of the azobenzene moiety of the catalyst. Furthermore, alkyne-PdII /LS-azo showed opposite enantioselectivity and helix-sense selectivity during the polymerization of the racemates of L-1 and D-1.
Collapse
Affiliation(s)
- Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province, 230009, China
| | - Kai He
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province, 230009, China
| | - Shu-Ming Kang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xing-Yu Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province, 230009, China
| | - Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province, 230009, China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
2
|
Koo B, Kim C. Synthesis of Stereocontrolled Degradable Polymer by Living Cascade Enyne Metathesis Polymerization. Angew Chem Int Ed Engl 2023; 62:e202312399. [PMID: 37737689 DOI: 10.1002/anie.202312399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
A stereocontrolled degradable polymer was synthesized via living cascade enyne metathesis polymerization. Highly stereodefined N,O-acetal-containing enyne monomers were prepared using the Pd-catalyzed hydroamination of alkoxyallenes and ring-closing metathesis. The resulting chiral polymer exhibited a narrow dispersity window. Block copolymers were prepared not only by sequentially adding nondegradable and degradable monomers but also by using enantiomerically different monomers to produce stereocontrolled blocks. Owing to the hydrolyzable N,O-acetal moiety in the backbone structure, the resulting polymer could degrade under acidic conditions generated using various acid concentrations to control the degradation. Additionally, the aza-Diels-Alder reaction modified the polymer without losing the stereochemistry.
Collapse
Affiliation(s)
- Bonwoo Koo
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, 28644, Cheongju, Republic of Korea
| | - Cheoljae Kim
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, 28644, Cheongju, Republic of Korea
| |
Collapse
|
3
|
Dalai PG, Swain S, Mohapatra S, Panda N. Metal-Free C-H Sulfamidation of 1,4-Naphthoquinone in Water. J Org Chem 2023; 88:13760-13770. [PMID: 37676688 DOI: 10.1021/acs.joc.3c01409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Direct sulfamidation of 1,4-naphthoquinones using N-methoxy sulfonamides under metal-free conditions in water was developed. Base-mediated nucleophilic addition of N-methoxy sulfonamides, followed by N-O bond cleavage allowed the formation of enesulfonamides. Further, the synthesis of pyrrolonaphthoquinones proved the practicability of the current approach.
Collapse
Affiliation(s)
- Pallaba Ganjan Dalai
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Swayamprava Swain
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Soumya Mohapatra
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Niranjan Panda
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
4
|
Raju C, Mridula K, Srinivasan N, Kunnikuruvan S, Sureshan KM. Topochemical Syntheses of Polyarylopeptides Involving Large Molecular Motions: Frustrated Monomer Packing Leads to the Formation of Polymer Blends. Angew Chem Int Ed Engl 2023; 62:e202306504. [PMID: 37486334 DOI: 10.1002/anie.202306504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/25/2023]
Abstract
We report the topochemical syntheses of three polyarylopeptides, wherein triazolylphenyl group is integrated into the backbone of peptide chains. We synthesized three different monomers having azide and arylacetylene as end-groups from glycine, L-alanine and L-valine. We crystallized these monomers and the crystal structures of two of them were determined by single-crystal X-ray diffractometry. Due to the steric constraints, both of these monomers crystallized with two molecules, viz. conformers A and B, in the asymmetric unit. Consistently, in both cases, the A-conformers are antiparallelly π-stacked and B-conformers are parallelly slip-stacked, exploiting weak interactions. Though the arrangements of molecules in the pristine crystals were unsuitable for topochemical reaction, upon heating, they undergo large motion inside the crystal lattice to reach a transient reactive orientation and thereby the self-sorted conformer stacks react to give a blend of triazole-linked polyarylopeptides having two different linkages. Due to the large molecular motion inside crystals, the product phase loses its crystallinity.
Collapse
Affiliation(s)
- Cijil Raju
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram, Kerala, 695551, India
| | - Kozhukunnon Mridula
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram, Kerala, 695551, India
| | - Nikitha Srinivasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Sooraj Kunnikuruvan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
- Centre for Atomistic Modelling and Materials Design and Centre for Molecular Materials and Functions, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
5
|
Soika J, McLaughlin C, Neveselý T, Daniliuc CG, Molloy JJ, Gilmour R. Organophotocatalytic N–O Bond Cleavage of Weinreb Amides: Mechanism-Guided Evolution of a PET to ConPET Platform. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julia Soika
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Calum McLaughlin
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Tomáš Neveselý
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - John. J. Molloy
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
6
|
Akhdar A, Gautier A, Hjelmgaard T, Faure S. N-Alkylated Aromatic Poly- and Oligoamides. Chempluschem 2021; 86:298-312. [PMID: 33620768 DOI: 10.1002/cplu.202000825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/15/2021] [Indexed: 01/18/2023]
Abstract
N-alkylated aromatic poly- and oligoamides are a particular class of abiotic foldamers that is deprived of the capability of forming intramolecular hydrogen-bonding networks to stabilize their tri-dimensional structure. The alkylation of the backbone amide nitrogen atoms greatly increases the chemical diversity accessible for aromatic poly- and oligoamides. However, the nature and the conformational preferences of the N,N-disubstituted amides profoundly modify the folding properties of these aromatic poly- and oligoamides. In this Review, representative members of this class of aromatic poly- and oligoamides will be highlighted, among them N-alkylated phenylene terephthalamides, benzanilides, pyridylamides, and aminomethyl benzamide oligomers. The principal synthetic pathways to the main classes of N-alkylated aromatic polyamides with narrow to broad molecular-weight distribution, or oligoamides with specific sequences, will be detailed and their foldameric properties will be discussed. The Review will end by describing the few applications reported to date and future prospects for the field.
Collapse
Affiliation(s)
- Ayman Akhdar
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, 63000, Clermont-Ferrand, France
| | - Arnaud Gautier
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, 63000, Clermont-Ferrand, France
| | - Thomas Hjelmgaard
- Rockwool International A/S, Hovedgaden 584, 2640, Hedehusene, Denmark
| | - Sophie Faure
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, 63000, Clermont-Ferrand, France
| |
Collapse
|
7
|
Ishido Y, Kanbayashi N, Okamura TA, Onitsuka K. Conformational Switch of Arylopeptide: Helix-Helix Transition Based on Side Chain Solvation. Macromol Rapid Commun 2021; 42:e2100250. [PMID: 34121257 DOI: 10.1002/marc.202100250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Indexed: 11/11/2022]
Abstract
Controlling the structural transition between well-defined architectures found in living system is essential in polymer chemistry as well as material science. Herein, the reversible conformational switch of a non-natural polypeptide with an aromatic ring (2,6-naphthalene spacer) on its peptide backbone, referred to as an arylopeptide, between two distinct well-defined helical structures (extended 31 -helix and contracted 41 -helix) using side chain solvation is demonstrated. The folding selectivity of the arylopeptide and found that the affinity between the solvent and side chains is an essential factor for determining the global structure is investigated. A thermoresponsive arylopeptide bearing oligoether groups (─(CH2 CH2 O)9 CH3 )) on the side chain is designed, which exhibited unique lower critical solution temperature behavior and converted from the 31 to the 41 -helix depending on the temperature. Furthermore, the solvent affinity of the entire polymer by combining substituents (─(CH2 CH2 O)3 CH3 and ─C12 H25 ) with different properties on the side chains to achieve a spring-like expansion-contraction system that allows interconversion between 31 - and 41 -helices is adjusted.
Collapse
Affiliation(s)
- Yuki Ishido
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Naoya Kanbayashi
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Taka-Aki Okamura
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
8
|
You T, Zhang M, Chen J, Liu H, Xia Y. Ruthenium( ii)-catalyzed reductive N–O bond cleavage of N-OR (R = H, alkyl, or acyl) substituted amides and sulfonamides. Org Chem Front 2021. [DOI: 10.1039/d0qo01093f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A convenient method for the reductive cleavage of the N–O bonds of amide derivatives was developed using ruthenium(ii)-catalyzed transfer hydrogenation reaction.
Collapse
Affiliation(s)
- Tingjie You
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Maosheng Zhang
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Jianhui Chen
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Hongmei Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| |
Collapse
|
9
|
Xu G, Mahmood Q, Lv C, Yang R, Zhou L, Wang Q. Asymmetric kinetic resolution polymerization. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Ishido Y, Kanbayashi N, Fujii N, Okamura TA, Haino T, Onitsuka K. Folding control of a non-natural glycopeptide using saccharide-coded structural information for polypeptides. Chem Commun (Camb) 2020; 56:2767-2770. [DOI: 10.1039/c9cc10030j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We synthesized “glyco-arylopeptides”, whose folding structure significantly changes depending on the kind of saccharide in their side chain. The saccharide moiety interacts with the main chain via hydrogen bonding, and the non-natural polypeptides form two well-defined architectures—(P)-31- and (M)-41-helices—depending on the length of the saccharide chains and even the configuration of a single stereo-genic center in the epimers.
Collapse
Affiliation(s)
- Yuki Ishido
- Department of Macromolecular Science, Graduate School of Science, Osaka University
- Toyonaka
- Japan
| | - Naoya Kanbayashi
- Department of Macromolecular Science, Graduate School of Science, Osaka University
- Toyonaka
- Japan
| | - Naoka Fujii
- Department of Chemistry, Graduate School of Science, Hiroshima University
- 1-3-1, Kagamiyama
- Higashi-Hiroshima
- Japan
| | - Taka-aki Okamura
- Department of Macromolecular Science, Graduate School of Science, Osaka University
- Toyonaka
- Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Science, Hiroshima University
- 1-3-1, Kagamiyama
- Higashi-Hiroshima
- Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science, Graduate School of Science, Osaka University
- Toyonaka
- Japan
| |
Collapse
|
11
|
Kanbayashi N, Saegusa M, Ishido Y, Okamura TA, Onitsuka K. Synthesis of an optically active polymer containing a planar phthalimide backbone by asymmetric polymerization. Polym Chem 2020. [DOI: 10.1039/d0py01073a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Herein we present the precise design and synthesis of a novel polymer backbone that induces a helical structure through asymmetric polymerization reactions of a phthalimide-based monomer catalyzed by a planar-chiral cyclopentadienyl–ruthenium complex.
Collapse
Affiliation(s)
- Naoya Kanbayashi
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Marina Saegusa
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Yuki Ishido
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Taka-aki Okamura
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| |
Collapse
|
12
|
Periodic introduction of aromatic units in polypeptides via chemoenzymatic polymerization to yield specific secondary structures with high thermal stability. Polym J 2019. [DOI: 10.1038/s41428-019-0242-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Ishido Y, Kanbayashi N, Okamura TA, Onitsuka K. Side-Chain-Driven Dual Structural System of Poly-Arylopeptide: Selective Helical Formation Derived from Aromatic Ring Flips on the Backbone. ACS Macro Lett 2019; 8:694-699. [PMID: 35619526 DOI: 10.1021/acsmacrolett.9b00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A methodology for producing dual structural systems of macromolecules, which involves flipping the unsymmetrical aromatic rings on the main chain is presented. Previously, we reported a non-natural polypeptide containing an aromatic ring on the peptide backbone, called a poly "arylopeptide". Herein, we used 2,6-naphthalene rings as axially unsymmetrical spacers, which has two geometrical isomers, anti and syn, to create dual structural properties. The miniscule energy difference between the two geometrical isomers can be amplified by incorporating the 2,6-naphthylene units into the polypeptide backbone, which creates a thermodynamic driving force for the formation of two specific global structures (i.e., 31-helix or 41-helix) biased toward one side geometrical isomer depending on the side chain. Additionally, the 31-helix can be switched to the 41-helix upon addition of a small amount of additives, indicating a conformational conversion from an identical sequence. The developmental dual helical systems exploit basic molecular geometry and can serve as a design platform for synthetic polymers.
Collapse
Affiliation(s)
- Yuki Ishido
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Naoya Kanbayashi
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Taka-Aki Okamura
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
14
|
Trifonova EA, Ankudinov NM, Mikhaylov AA, Chusov DA, Nelyubina YV, Perekalin DS. A Planar-Chiral Rhodium(III) Catalyst with a Sterically Demanding Cyclopentadienyl Ligand and Its Application in the Enantioselective Synthesis of Dihydroisoquinolones. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801703] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Evgeniya A. Trifonova
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 28 Vavilova str. 119991 Moscow Russia
| | - Nikita M. Ankudinov
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 28 Vavilova str. 119991 Moscow Russia
| | - Andrey A. Mikhaylov
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 28 Vavilova str. 119991 Moscow Russia
| | - Denis A. Chusov
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 28 Vavilova str. 119991 Moscow Russia
| | - Yulia V. Nelyubina
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 28 Vavilova str. 119991 Moscow Russia
| | - Dmitry S. Perekalin
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 28 Vavilova str. 119991 Moscow Russia
| |
Collapse
|
15
|
Trifonova EA, Ankudinov NM, Mikhaylov AA, Chusov DA, Nelyubina YV, Perekalin DS. A Planar-Chiral Rhodium(III) Catalyst with a Sterically Demanding Cyclopentadienyl Ligand and Its Application in the Enantioselective Synthesis of Dihydroisoquinolones. Angew Chem Int Ed Engl 2018; 57:7714-7718. [DOI: 10.1002/anie.201801703] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/14/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Evgeniya A. Trifonova
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 28 Vavilova str. 119991 Moscow Russia
| | - Nikita M. Ankudinov
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 28 Vavilova str. 119991 Moscow Russia
| | - Andrey A. Mikhaylov
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 28 Vavilova str. 119991 Moscow Russia
| | - Denis A. Chusov
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 28 Vavilova str. 119991 Moscow Russia
| | - Yulia V. Nelyubina
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 28 Vavilova str. 119991 Moscow Russia
| | - Dmitry S. Perekalin
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 28 Vavilova str. 119991 Moscow Russia
| |
Collapse
|