1
|
Kureha T, Ohira M, Takahashi Y, Li X, Gilbert EP, Shibayama M. Nanoscale Structures of Poly(oligo ethylene glycol methyl ether methacrylate) Hydrogels Revealed by Small-Angle Neutron Scattering. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takuma Kureha
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Masashi Ohira
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8685, Japan
| | - Yuki Takahashi
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Xiang Li
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Elliot P. Gilbert
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, New South Wales 2234, Australia
| | - Mitsuhiro Shibayama
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
2
|
Kureha T, Hayashi K, Li X, Shibayama M. Mechanical properties of temperature-responsive gels containing ethylene glycol in their side chains. SOFT MATTER 2020; 16:10946-10953. [PMID: 33146225 DOI: 10.1039/d0sm01436b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The mechanical properties of temperature-responsive and biocompatible poly(oligo-ethylene glycol methyl ether methacrylate)-based gels were investigated using dynamic viscoelasticity measurements so as to find applications in tissue and biomedical engineering. The gels were copolymerized using two ethylene glycol methacrylate monomers with diethylene glycol side chains: diethylene glycol methacrylate (MeO2MA), which contains two ethylene oxide units, and oligo-ethylene glycol methyl ether methacrylate (OEGMA) with either four or five ethylene oxide units. The storage (G') and loss (G'') moduli of these gels exhibit unique temperature-responsive behavior and depend on the copolymerization ratio. In MeO2MA-rich gels, phase separation occurred with increasing temperature, resulting in a significant increase in G' and the disappearance of the frequency dependence of G''. Although phase separation of OEGMA-rich gels was also observed with increasing temperature, it resulted in only a slight increase in the storage modulus due to the steric hindrance of the side chain. The mechanical properties of these gels are thus found to be strongly affected by a slight difference in the number of ethylene oxide groups in their side chains.
Collapse
Affiliation(s)
- Takuma Kureha
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan.
| | | | | | | |
Collapse
|
3
|
Xu F, Corbett B, Bell S, Zhang C, Budi Hartono M, Farsangi ZJ, MacGregor J, Hoare T. High-Throughput Synthesis, Analysis, and Optimization of Injectable Hydrogels for Protein Delivery. Biomacromolecules 2019; 21:214-229. [PMID: 31686502 DOI: 10.1021/acs.biomac.9b01132] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Fei Xu
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Brandon Corbett
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Sydney Bell
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Chiyan Zhang
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Monika Budi Hartono
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Zohreh Jomeh Farsangi
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - John MacGregor
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
4
|
Urosev I, Dorrington H, Muzzin N, Alsop R, Bakaic E, Gilbert T, Rheinstädter M, Hoare T. Injectable Poly(oligoethylene glycol methacrylate)-Based Hydrogels Fabricated from Highly Branched Precursor Polymers: Controlling Gel Properties by Precursor Polymer Morphology. ACS APPLIED POLYMER MATERIALS 2019; 1:369-380. [DOI: 10.1021/acsapm.8b00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Ivan Urosev
- School of Biomedical Engineering, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Helen Dorrington
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Nicola Muzzin
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Richard Alsop
- Department of Physics and Astronomy, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Emilia Bakaic
- School of Biomedical Engineering, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Trevor Gilbert
- School of Biomedical Engineering, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Maikel Rheinstädter
- Department of Physics and Astronomy, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Todd Hoare
- School of Biomedical Engineering, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
5
|
Kureha T, Hayashi K, Ohira M, Li X, Shibayama M. Dynamic Fluctuations of Thermoresponsive Poly(oligo-ethylene glycol methyl ether methacrylate)-Based Hydrogels Investigated by Dynamic Light Scattering. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Takuma Kureha
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | - Kyohei Hayashi
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | - Masashi Ohira
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | - Xiang Li
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | | |
Collapse
|
6
|
Iritani K, Ikeda M, Yang A, Tahara K, Anzai M, Hirose K, De Feyter S, Moore JS, Tobe Y. Electrostatically Driven Guest Binding in a Self-Assembled Porous Network at the Liquid/Solid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6036-6045. [PMID: 29717878 DOI: 10.1021/acs.langmuir.8b00699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present here the construction of a self-assembled two-dimensional (2D) porous monolayer bearing a highly polar 2D space to study guest co-adsorption through electrostatic interactions at the liquid/solid interface. For this purpose, a dehydrobenzo[12]annulene (DBA) derivative, DBA-TeEG, having tetraethylene glycol (TeEG) groups at the end of the three alternating alkoxy chains connected by p-phenylene linkers was synthesized. As a reference host molecule, DBA-C10, having nonpolar C10 alkyl chains at three alternating terminals, was employed. As guest molecules, hexagonal phenylene-ethynylene macrocycles (PEMs) attached by triethylene glycol (TEG) ester and hexyl ester groups, PEM-TEG and PEM-C6, respectively, at each vertex of the macrocyclic periphery were used. Scanning tunneling microscopy observations at the 1,2,4-trichlorobenzene/highly oriented pyrolytic graphite interface revealed that PEM-TEG was immobilized in the pores formed by DBA-TeEG at higher probability because of electrostatic interactions such as dipole-dipole and hydrogen bonding interactions between oligoether units of the host and guest, in comparison to PEM-C6 with nonpolar groups. These observations are discussed based on molecular mechanics simulations to investigate the role of the polar functional groups. When a nonpolar host matrix formed by DBA-C10 was used, however, only phase separation and preferential adsorption were observed; virtually no host-guest complexation was discernible. This is ascribed to the strong affinity between the guest molecules which form by themselves densely packed van der Waals networks on the surface.
Collapse
Affiliation(s)
- Kohei Iritani
- Division of Frontier Materials Science, Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan
| | - Motoki Ikeda
- Division of Frontier Materials Science, Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan
| | - Anna Yang
- Departments of Chemistry and Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana Champaign , Urbana , Illinois 61801 , United States
| | - Kazukuni Tahara
- Division of Frontier Materials Science, Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan
- Department of Applied Chemistry, School of Science and Technology , Meiji University , Kawasaki , Kanagawa 214-8571 , Japan
| | - Masaru Anzai
- Department of Applied Chemistry, School of Science and Technology , Meiji University , Kawasaki , Kanagawa 214-8571 , Japan
| | - Keiji Hirose
- Division of Frontier Materials Science, Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan
| | - Steven De Feyter
- Department of Chemistry , KU Leuven-University of Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Jeffrey S Moore
- Departments of Chemistry and Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana Champaign , Urbana , Illinois 61801 , United States
| | - Yoshito Tobe
- Division of Frontier Materials Science, Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan
- The Institute of Scientific and Industrial Research , Osaka University , 8-1, Mihogaoka , Osaka 567-0047 , Ibaraki , Japan
| |
Collapse
|
7
|
Hwang J, Lee DG, Yeo H, Rao J, Zhu Z, Shin J, Jeong K, Kim S, Jung HW, Khan A. Proton Transfer Hydrogels: Versatility and Applications. J Am Chem Soc 2018; 140:6700-6709. [DOI: 10.1021/jacs.8b03514] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- JiHyeon Hwang
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Dong G. Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Hyunki Yeo
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Jingyi Rao
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Zhiyuan Zhu
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Jawon Shin
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Keunsoo Jeong
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Sehoon Kim
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Hyun Wook Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| |
Collapse
|