1
|
He M, Hsu YI, Uyama H. Superior sequence-controlled poly(L-lactide)-based bioplastic with tunable seawater biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134819. [PMID: 38850940 DOI: 10.1016/j.jhazmat.2024.134819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Developing superior-performance marine-biodegradable plastics remains a critical challenge in mitigating marine plastic pollution. Commercially available biodegradable polymers, such as poly(L-lactide) (PLA), undergo slow degradation in complex marine environments. This study introduces an innovative bioplastic design that employs a facile ring-opening and coupling reaction to incorporate hydrophilic polyethylene glycol (PEG) into PLA, yielding PEG-PLA copolymers with either sequence-controlled alternating or random structures. These materials exhibit exceptional toughness in both wet and dry states, with an elongation at break of 1446.8% in the wet state. Specifically, PEG4kPLA2k copolymer biodegraded rapidly in proteinase K enzymatic solutions and had a significant weight loss of 71.5% after 28 d in seawater. The degradation primarily affects the PLA segments within the PEG-PLA copolymer, as evidenced by structural changes confirmed through comprehensive characterization techniques. The seawater biodegradability, in line with the Organization for Economic Cooperation and Development 306 Marine biodegradation test guideline, reached 72.63%, verified by quantitative biochemical oxygen demand analysis, demonstrating rapid chain scission in marine environments. The capacity of PEG-PLA bioplastic to withstand DI water and rapidly biodegrade in seawater makes it a promising candidate for preventing marine plastic pollution.
Collapse
Affiliation(s)
- Manjie He
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Luan Q, Hu H, Ouyang X, Jiang X, Lin C, Zhu H, Shi T, Zhao YL, Wang J, Zhu J. New modifications of PBAT by a small amount of oxalic acid: Fast crystallization and enhanced degradation in all natural environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133475. [PMID: 38219588 DOI: 10.1016/j.jhazmat.2024.133475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/01/2024] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Biodegradable plastics are often mistakenly thought to be capable of degrading in any environment, but their slow degradation rate in the natural environment is still unsatisfactory. We synthetized a novel series of poly(butylene oxalate-co-adipate-co-terephthalate) (PBOAT) with unchanged melting point (135 °C), high elastic modulus (140 - 219 MPa) and elongation at break (478 - 769%). Fast isothermal crystallization with a semi-crystallization time < 20 s was demonstrated by the PBOAT. In N2 and air atmospheres, the PBOAT maintained the Td,5% higher than 329 °C. They also had good thermal stability at melt processing temperature for more than 20 min. PBOAT exhibited faster hydrolysis and seawater degradation, even under natural soil burial without light, but still kept stable under low humidity conditions during the storage and the shelf-life. Moreover, the hydrolysis mechanisms were clarified based on Fukui function analysis and DFT calculation, indicating that the hydrolysis of PBOAT would be more straightforward. The mechanism of soil burial is also elucidated through detailed characterization of the structure changes. The PBOAT offered a fresh approach to the development of high-performing, naturally degradable materials.
Collapse
Affiliation(s)
- Qingyang Luan
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Hu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Xingyu Ouyang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyu Jiang
- Cambridge A level Center, Zhenhai High School of Zhejiang, No.32 Gulou East Road, Zhenhai, Ningbo 315200, China
| | - Chen Lin
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Hanxu Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinggang Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
3
|
Tian S, Cao X, Luo K, Lin Y, Wang W, Xu J, Guo B. Effects of Nonhydroxyl Oxygen Heteroatoms in Diethylene Glycols on the Properties of 2,5-Furandicarboxylic Acid-Based Polyesters. Biomacromolecules 2021; 22:4823-4832. [PMID: 34669395 DOI: 10.1021/acs.biomac.1c01106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With regard to polyesters based on biobased 2,5-furandicarboxylic acid (FDCA), our work presents a new strategy, heteroatom substitution, to adjust the thermal and gas barrier properties. The effects of nonhydroxyl oxygen heteroatoms in the diols on the properties of FDCA-based polyesters were first investigated by a combination of an experiment and molecular simulation. The results demonstrated that the introduction of oxygen heteroatoms significantly influenced the thermal and gas barrier properties. As for the two model polymers with a very similar skeleton structure, poly(pentylene 2,5-furandicarboxylate) (PPeF) and poly(diethylene glycol 2,5-furandicarboxylate) (PDEF), their Tg exhibited an obviously increasing order. Moreover, they showed similar thermal stability and thermal oxidative stability. Dynamic mechanical analysis, positron annihilation lifetime spectroscopy, and molecular dynamics simulation indicated that the gas barrier properties followed the sequence of PDEF > PPeF mainly due to the decreased chain mobility and smaller fractional free volume. In-depth analysis of the effects of heteroatom substitution has an important directive significance for the design and preparation of new high glass transition temperature or novel excellent gas barrier materials. Through the manipulation of different heteroatoms in the diols, the polyesters with varied properties can be expected.
Collapse
Affiliation(s)
- Sunan Tian
- Key Laboratory of Advanced Materials of Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xingzhong Cao
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiqiang Luo
- Key Laboratory of Advanced Materials of Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanyan Lin
- PetroChina Liaoyang Petrochemical Company, Liaoyang 111003, China
| | - Wenjuan Wang
- PetroChina Liaoyang Petrochemical Company, Liaoyang 111003, China
| | - Jun Xu
- Key Laboratory of Advanced Materials of Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Baohua Guo
- Key Laboratory of Advanced Materials of Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.,Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
| |
Collapse
|
4
|
Mondschein RJ, Hostetler J, Arrington CB, Long TE. Hydroxyethylresorcinol- and hydroxyethylhydroquinone-containing poly(ethylene terephthalate) copolymers. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Lv J, Chen S, Xu Z, Zhang S, Li Y, Zhao Y. Synthesis and Characterization of Diastereoisomeric Polyesters Derived from Bisphenols Bearing Vicinal Trifluoromethyl Groups. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jinghuang Lv
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Si Chen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Siquan Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Ya Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
- Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
6
|
Katoh T, Ogawa Y, Ohta Y, Yokozawa T. Synthesis of polyester by means of polycondensation of diol ester and dicarboxylic acid ester through ester–ester exchange reaction. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Takayoshi Katoh
- Department of Materials and Life Chemistry Kanagawa University Yokohama Japan
| | - Yukiko Ogawa
- Department of Materials and Life Chemistry Kanagawa University Yokohama Japan
| | - Yoshihiro Ohta
- Department of Materials and Life Chemistry Kanagawa University Yokohama Japan
| | - Tsutomu Yokozawa
- Department of Materials and Life Chemistry Kanagawa University Yokohama Japan
| |
Collapse
|
7
|
Vercammen J, Bocus M, Neale S, Bugaev A, Tomkins P, Hajek J, Van Minnebruggen S, Soldatov A, Krajnc A, Mali G, Van Speybroeck V, E. De Vos D. Shape-selective C–H activation of aromatics to biarylic compounds using molecular palladium in zeolites. Nat Catal 2020. [DOI: 10.1038/s41929-020-00533-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Pang C, Jiang X, Yu Y, Chen L, Ma J, Gao H. Copolymerization of Natural Camphor-Derived Rigid Diol with Various Dicarboxylic Acids: Access to Biobased Polyesters with Various Properties. ACS Macro Lett 2019; 8:1442-1448. [PMID: 35651189 DOI: 10.1021/acsmacrolett.9b00570] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, alicyclic (1R,3S)-1,2,2-trimethylcyclopentane-1,3-dimethanol (TCDM), derived from natural camphor, was copolymerized with linear α,ω-diacids, terephthalic acid (TPA), and 2,5-furandicarboxylic acid (FDCA), affording a series of polyesters with functional properties. 2D NMR spectroscopy revealed that the stereoconfiguration of TCDM was preserved after polymerization. The TCDM polyester based on TPA showed high thermostability, high Tg value (115 °C), high modulus (1.3 GPa), and high ultimate strength (29.8 MPa). The TCDM polyester based on 1,4-succinic acid exhibited excellent ductility and resilience. Lastly, the rigidity analysis based on van Krevelen's group contribution method, coupled with the comparisons between TCDM- and sugar-based polyesters, confirmed that TCDM is a highly reactive and rigid diol. Results indicate that TCDM polyesters are suitable for a wide range of applications, including hot-filled containers and transparent packaging materials. This work addresses some critical needs for high performance biopolymers such as achieving high Tg values, high thermostability, and high transparency.
Collapse
Affiliation(s)
- Chengcai Pang
- School of Chemistry and Chemical Engineering, School of Material Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| | - Xueshuang Jiang
- School of Chemistry and Chemical Engineering, School of Material Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| | - Yan Yu
- School of Chemistry and Chemical Engineering, School of Material Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| | - Li Chen
- School of Chemistry and Chemical Engineering, School of Material Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| | - Jianbiao Ma
- School of Chemistry and Chemical Engineering, School of Material Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| | - Hui Gao
- School of Chemistry and Chemical Engineering, School of Material Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| |
Collapse
|
9
|
Wang Y, Shoda M, Hisama A, Oyaizu K, Nishide H. Oxygen Scavenging and Oxygen Barrier Poly(1,2‐butadiene) Films Containing an Iron‐Complex Catalyst. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yu Wang
- Department of Applied Chemistry and Research Institute for Science and EngineeringWaseda University Tokyo 169‐8555 Japan
| | - Motoharu Shoda
- Department of Applied Chemistry and Research Institute for Science and EngineeringWaseda University Tokyo 169‐8555 Japan
| | - Ayako Hisama
- Department of Applied Chemistry and Research Institute for Science and EngineeringWaseda University Tokyo 169‐8555 Japan
| | - Kenichi Oyaizu
- Department of Applied Chemistry and Research Institute for Science and EngineeringWaseda University Tokyo 169‐8555 Japan
| | - Hiroyuki Nishide
- Department of Applied Chemistry and Research Institute for Science and EngineeringWaseda University Tokyo 169‐8555 Japan
| |
Collapse
|
10
|
Sun L, Wang J, Mahmud S, Jiang Y, Zhu J, Liu X. New insight into the mechanism for the excellent gas properties of poly(ethylene 2,5-furandicarboxylate) (PEF): Role of furan ring’s polarity. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.06.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Yu Y, Pang C, Jiang X, Yang Z, Ma J, Gao H. Copolycarbonates Based on a Bicyclic Diol Derived from Citric Acid and Flexible 1,4-Cyclohexanedimethanol: From Synthesis to Properties. ACS Macro Lett 2019; 8:454-459. [PMID: 35651131 DOI: 10.1021/acsmacrolett.9b00184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Octahydro-2,5-pentalenediol (OPD), is a compelling citric acid-based bicyclic diol with excellent rigidity and thermal stability. Herein, a series of copolycarbonates (co-PCs) were synthesized, starting from OPD, 1,4-cyclohexanedimethanol (CHDM), and diphenyl carbonate (DPC). All polycarbonates are amorphous with glass transition temperatures increased when increasing the content in OPD units. Dynamic mechanical analysis (DMA) revealed the sub Tg β-relaxations at low temperatures originating from the CHDM conformational transition, indicative of the possibility of impact-resistance. Morphological analysis of the fracture surfaces revealed the toughening mechanism under tensile was shear yielding of the matrix triggered by internal cavitation. The incorporation of OPD steadily increased the Young's modulus, from 482 to 757 MPa, with the OPD fraction increased from 0 to 30 mol %. As the OPD content further increased, a "ductile-to-brittle" transition occurred due to the low number-average molecular weight (Mn) and the low entangled strand density (high entanglement molecular weight).
Collapse
Affiliation(s)
- Yan Yu
- School of Material Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| | - Chengcai Pang
- School of Material Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| | - Xueshuang Jiang
- School of Material Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| | - Zhiyi Yang
- School of Material Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| | - Jianbiao Ma
- School of Material Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| | - Hui Gao
- School of Material Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| |
Collapse
|
12
|
Heifferon KV, Mondschein RJ, Talley SJ, Moore RB, Turner SR, Long TE. Tailoring the glassy mesophase range of thermotropic polyesters through copolymerization of 4,4’-bibenzoate and kinked isomer. POLYMER 2019. [DOI: 10.1016/j.polymer.2018.12.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Mondschein RJ, Dennis JM, Liu H, Ramakrishnan RK, Sirrine JM, Weiseman T, Colby RH, Nazarenko S, Turner SR, Long TE. Influence of Bibenzoate Regioisomers on Cyclohexanedimethanol-Based (Co)polyester Structure–Property Relationships. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ryan J. Mondschein
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph M. Dennis
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Haoyu Liu
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ramesh K. Ramakrishnan
- School of Polymers and High Performance Materials, University of Southern Mississippi, Hattiesburg, Mississippi 39402, United States
| | - Justin M. Sirrine
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tobin Weiseman
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ralph H. Colby
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sergei Nazarenko
- School of Polymers and High Performance Materials, University of Southern Mississippi, Hattiesburg, Mississippi 39402, United States
| | - S. Richard Turner
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Timothy E. Long
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
14
|
Shingte RD, Chatterjee D, Tawade BV, Shrimant B, Wadgaonkar PP. Aromatic polyesters containing cardo perhydrocumyl cyclohexylidene groups: Synthesis, characterization and gas permeation study. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2018.1549950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Rahul D. Shingte
- Polymers and Advanced Materials Laboratory Polymer Science and Engineering Division CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, India
| | - Deepshikha Chatterjee
- Polymers and Advanced Materials Laboratory Polymer Science and Engineering Division CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, India
| | - Bhausaheb V. Tawade
- Polymers and Advanced Materials Laboratory Polymer Science and Engineering Division CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, India
| | - Bharat Shrimant
- Polymers and Advanced Materials Laboratory Polymer Science and Engineering Division CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, India
| | - Prakash P. Wadgaonkar
- Polymers and Advanced Materials Laboratory Polymer Science and Engineering Division CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, India
| |
Collapse
|
15
|
Edling HE, Liu H, Sun H, Mondschein RJ, Schiraldi DA, Long TE, Turner SR. Copolyesters based on bibenzoic acids. POLYMER 2018. [DOI: 10.1016/j.polymer.2017.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|