1
|
Ge Y, Tan S, Wu Y, Wang C. Magnetic ionic crystals with light controllable mobility and CO 2 physisorption/desorption. Chem Commun (Camb) 2024; 60:5165-5168. [PMID: 38639641 DOI: 10.1039/d4cc00301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Magnetic responsive ionic liquid (MIL) demonstrated an advanced photomobility in confined narrow spaces through the doping of photoresponsive azobenzene by the interplay of supramolecular π-cations. Moreover, reversible physisorption/desorption of CO2 was achieved based on the photocontrolled solid-liquid transitions of the mixtures. Our approach opens opportunities to obtain multi-stimuli response through the coordinated supramolecular interplay of each responsive component.
Collapse
Affiliation(s)
- Yifan Ge
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Shuai Tan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yong Wu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Caihong Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Li HN, Zhang C, Yang HC, Liang HQ, Wang Z, Xu ZK. Solid-state, liquid-free ion-conducting elastomers: rising-star platforms for flexible intelligent devices. MATERIALS HORIZONS 2024; 11:1152-1176. [PMID: 38165799 DOI: 10.1039/d3mh01812a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Soft ionic conductors have emerged as a powerful toolkit to engineer transparent flexible intelligent devices that go beyond their conventional counterparts. Particularly, due to their superior capacities of eliminating the evaporation, freezing and leakage issues of the liquid phase encountered with hydrogels, organohydrogels and ionogels, the emerging solid-state, liquid-free ion-conducting elastomers have been largely recognized as ideal candidates for intelligent flexible devices. However, despite their extensive development, a comprehensive and timely review in this emerging field is lacking, particularly from the perspective of design principles, advanced manufacturing, and distinctive applications. Herein, we present (1) the design principles and intriguing merits of solid-state, liquid-free ion-conducting elastomers; (2) the methods to manufacture solid-state, liquid-free ion-conducting elastomers with preferential architectures and functions using advanced technologies such as 3D printing; (3) how to leverage solid-state, liquid-free ion-conducting elastomers in exploiting advanced applications, especially in the fields of flexible wearable sensors, bioelectronics and energy harvesting; (4) what are the unsolved scientific and technical challenges and future opportunities in this multidisciplinary field. We envision that this review will provide a paradigm shift to trigger insightful thinking and innovation in the development of intelligent flexible devices and beyond.
Collapse
Affiliation(s)
- Hao-Nan Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Chao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Hao-Cheng Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Hong-Qing Liang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
3
|
Li W, Gao N, Zhang W, Feng K, Zhou K, Zhao H, He G, Liu W, Li G. Visual demonstration and prediction of the Hofmeister series based on a poly(ionic liquid) photonic array. NANOSCALE 2023. [PMID: 37194393 DOI: 10.1039/d3nr01531a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Hofmeister effect and associated Hofmeister series (HS) are ubiquitous in physicochemical phenomena and have demonstrated fundamental importance in a myriad of fields ranging from chemistry to biology. Visualization of the HS not only helps to straightforwardly understand the underpinning mechanism, but also enables the prediction of new ion positions in the HS and directs the applications of the Hofmeister effect. Owing to the difficulties of sensing and reporting complete multiple and subtle inter- and intramolecular interactions involved in the Hofmeister effect, facile and accurate visual demonstration and prediction of the HS remain highly challenging. Herein, a poly(ionic liquid) (PIL)-based photonic array containing 6 inverse opal microspheres was rationally constructed to efficiently sense and report the ion effects of the HS. The PILs can not only directly conjugate with HS ions due to their ion-exchange properties, but also provide sufficient noncovalent binding diversity with these ions. Meanwhile, subtle PIL-ion interactions can be sensitively amplified to optical signals owing to their photonic structures. Therefore, synergistic integration of PILs and photonic structures gives rise to accurate visualization of the ion effect of the HS, as demonstrated by correctly ranking 7 common anions. More importantly, assisted by principal component analysis (PCA), the developed PIL photonic array can serve as a general platform to facilely, accurately, and robustly predict the HS positions of an unprecedented amount of important and useful anions and cations. These findings indicate that the PIL photonic platform is very promising for addressing challenges in the visual demonstration and prediction of HS and promoting a molecular-level understanding of the Hoffmeister effect.
Collapse
Affiliation(s)
- Wenyun Li
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Ning Gao
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Wanlin Zhang
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Kai Feng
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Kang Zhou
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Hongwei Zhao
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Guokang He
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Weigang Liu
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Guangtao Li
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
4
|
Kar M, Anas M, Singh A, Basak A, Sen P, Mandal TK. Ion-/Thermo-Responsive fluorescent perylene-poly(ionic liquid) conjugates: One-pot microwave synthesis, self-aggregation and biological applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Dinda P, Anas M, Banerjee P, Mandal TK. Dual Thermoresponsive Boc-Lysine-Based Acryl Polymer: RAFT Kinetics and Anti-Protein-Fouling of Its Zwitterionic Form. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Priyanka Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Mahammad Anas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Palash Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Tarun K. Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
6
|
Liu C, Raza F, Qian H, Tian X. Recent advances in poly(ionic liquid)s for biomedical application. Biomater Sci 2022; 10:2524-2539. [PMID: 35411889 DOI: 10.1039/d2bm00046f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Poly(ionic liquid)s (PILs) are polymers containing ions in their side-chain or backbone, and the designability and outstanding physicochemical properties of PILs have attracted widespread attention from researchers. PILs have specific characteristics, including negligible vapor pressure, high thermal and chemical stability, non-flammability, and self-assembly capabilities. PILs can be well combined with advanced analytical instruments and technology and have made outstanding contributions to the development of biomedicine aiding in the continuous advancement of science and technology. Here we reviewed the advances of PILs in the biomedical field in the past five years with a focus on applications in proteomics, drug delivery, and development. This paper aims to engage pharmaceutical and biomedical scientists to full understand PILs and accelerate the progress from laboratory research to industrialization.
Collapse
Affiliation(s)
- Chunxia Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
7
|
Banerjee P, Kar M, Dinda P, Mandal TK. Ionic liquid-based unconventional photoinitiators for aqueous polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Facile preparation of tertiary amine grafted poly (α,β-L-aspartic acid) with zwitterionic property to limit nonspecific protein adsorption. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2020.1805331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Playing construction with the monomer toy box for the synthesis of multi‐stimuli responsive copolymers by reversible deactivation radical polymerization protocols. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Han IK, Han J, Kim YS. Liquid-to-Solid Phase Transitions of Imidazolium-Based Zwitterionic Polymers Induced by Hofmeister Anions. Chem Asian J 2021; 16:1897-1900. [PMID: 34018681 DOI: 10.1002/asia.202100502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/21/2021] [Indexed: 11/12/2022]
Abstract
In this study, we compared the responses of two different types of zwitterionic polymers (ZPs), polyvinylimidzole sulfobetaine (poly(SBVI)) and polymethacrylate sulfobetaine (poly(SBMA)) to Hofmeister anions. Although the anions of the two ZPs were the same as the sulfonate anions and only the types of their cations were different from each other, the aggregation behavior of each in the salt aqueous solution was remarkably different. Consequently, poly(SBVI) exhibited both salting-in and salting-out effects depending on the type and concentration of salt, while poly(SBMA) only exhibited the anti-polyelectrolyte effect. The results of this study provide a deeper understanding of the behavior of zwitterionic polymers in salt solutions and will greatly expand their applications.
Collapse
Affiliation(s)
- Im Kyung Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, 37673, Pohang, Gyeongbuk, South Korea
| | - Jihoon Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, 37673, Pohang, Gyeongbuk, South Korea
| | - Youn Soo Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, 37673, Pohang, Gyeongbuk, South Korea
| |
Collapse
|
11
|
Bairagi U, Jacob J. Macroporous Polyzwitterionic Gels As Versatile Intermediates for the Fixation and Release of Anions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5424-5435. [PMID: 33891417 DOI: 10.1021/acs.langmuir.1c00888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new stable and functional polyzwitterion poly[1-(carboxymethyl)-4-methacrylamidopyridin-1-ium] was synthesized. The zwitterionic polymer shows its isoelectric point at a pH of 4.2, bidirectional pH responsiveness, and formation of dendritic fractal self-aggregated structures. Using this as a common intermediate, a simple, direct, and scalable single-step protocol was established to introduce various elementary anions like NO3-, HSO4-, H2PO4-, F-, Cl-, Br-, I-, CH3COO-, and HCOO- in their salt forms by reaction with the corresponding acids. FESEM studies on cross-linked polymeric hydrogels established the macroporous nature of these materials with their pore size in the range of 10-15 μm. Bidirectional swelling behavior was observed in these hydrogels from gel swelling kinetics and pH studies. Anion release studies in deionized water and buffer solutions showed ∼82 and ∼95% cumulative release for nitrate and phosphate anions, respectively, in 72 h. Our studies suggest that multifunctional polyzwitterionic gels are promising intermediates in the fixation and release of anions like nitrate and phosphate with potential applications in agriculture and healthcare.
Collapse
Affiliation(s)
- Ujjawal Bairagi
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Josemon Jacob
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India
| |
Collapse
|
12
|
Friess K, Izák P, Kárászová M, Pasichnyk M, Lanč M, Nikolaeva D, Luis P, Jansen JC. A Review on Ionic Liquid Gas Separation Membranes. MEMBRANES 2021; 11:97. [PMID: 33573138 PMCID: PMC7911519 DOI: 10.3390/membranes11020097] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 02/02/2023]
Abstract
Ionic liquids have attracted the attention of the industry and research community as versatile solvents with unique properties, such as ionic conductivity, low volatility, high solubility of gases and vapors, thermal stability, and the possibility to combine anions and cations to yield an almost endless list of different structures. These features open perspectives for numerous applications, such as the reaction medium for chemical synthesis, electrolytes for batteries, solvent for gas sorption processes, and also membranes for gas separation. In the search for better-performing membrane materials and membranes for gas and vapor separation, ionic liquids have been investigated extensively in the last decade and a half. This review gives a complete overview of the main developments in the field of ionic liquid membranes since their first introduction. It covers all different materials, membrane types, their preparation, pure and mixed gas transport properties, and examples of potential gas separation applications. Special systems will also be discussed, including facilitated transport membranes and mixed matrix membranes. The main strengths and weaknesses of the different membrane types will be discussed, subdividing them into supported ionic liquid membranes (SILMs), poly(ionic liquids) or polymerized ionic liquids (PILs), polymer/ionic liquid blends (physically or chemically cross-linked 'ion-gels'), and PIL/IL blends. Since membrane processes are advancing as an energy-efficient alternative to traditional separation processes, having shown promising results for complex new separation challenges like carbon capture as well, they may be the key to developing a more sustainable future society. In this light, this review presents the state-of-the-art of ionic liquid membranes, to analyze their potential in the gas separation processes of the future.
Collapse
Affiliation(s)
- Karel Friess
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.F.); (P.I.); (M.L.)
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Pavel Izák
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.F.); (P.I.); (M.L.)
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Magda Kárászová
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Mariia Pasichnyk
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Marek Lanč
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.F.); (P.I.); (M.L.)
| | - Daria Nikolaeva
- Materials & Process Engineering, UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium; (D.N.); (P.L.)
| | - Patricia Luis
- Materials & Process Engineering, UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium; (D.N.); (P.L.)
| | | |
Collapse
|
13
|
Anas M, Dinda P, Kar M, Mandal TK. Anion-induced thermoresponsiveness in cationic polycysteine and DNA binding. Polym Chem 2021. [DOI: 10.1039/d1py01187a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study describes the synthesis of an l-cysteine-based water-soluble cationic polypeptide, an investigation of its thermoresponsive behaviour in the presence of added anions and its polyplexation with DNA.
Collapse
Affiliation(s)
- Mahammad Anas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Priyanka Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Mahuya Kar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Tarun K. Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
14
|
Banerjee P, Anas M, Jana S, Mandal TK. Recent developments in stimuli-responsive poly(ionic liquid)s. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02091-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Wang J, Tang Y, Chu H, Shen J, Wang C, Wei Y. Adjusting the chromatographic properties of poly(ionic liquid)-modified stationary phases by substitution on the imidazolium cation. J Sep Sci 2020; 43:2766-2772. [PMID: 32419326 DOI: 10.1002/jssc.202000189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/28/2020] [Accepted: 04/14/2020] [Indexed: 01/25/2023]
Abstract
Poly(ionic liquid)-modified stationary phases can have multiple interactions with solutes. However, in most stationary phases, separation selectivity is adjusted by changing the poly(ionic liquid) anions. In this work, two poly(ionic liquid)-modified silica stationary phases were prepared by introducing the cyano or tetrazolyl group on the pendant imidazolium cation on the polymer chains. Various analytes were selected to investigate their mechanism of retention in the stationary phases using different mobile phases. Two poly(ionic liquid)-modified stationary phases can provide various interactions toward solutes. Compared to the cyano-functionalized poly(ionic liquid) stationary phase, the tetrazolyl-functionalized poly(ionic liquid) stationary phase provides additional cation-exchange and π-π interactions, resulting in different separation selectivity toward analytes. Finally, applicability of the developed stationary phases was demonstrated by the efficient separation of nonsteroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Yuqi Tang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Huiyuan Chu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Jiwei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| |
Collapse
|
16
|
Karjalainen E, Suvarli N, Tenhu H. Thermoresponsive behavior of poly[trialkyl-(4-vinylbenzyl)ammonium] based polyelectrolytes in aqueous salt solutions. Polym Chem 2020. [DOI: 10.1039/d0py00917b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A systematic method to induce thermoresponsive behavior for polycations with salts from the reversed Hofmeister series is introduced.
Collapse
Affiliation(s)
- Erno Karjalainen
- Department of Chemistry
- University of Helsinki
- 00014 Helsingin yliopisto
- Finland
| | - Narmin Suvarli
- Department of Chemistry
- University of Helsinki
- 00014 Helsingin yliopisto
- Finland
| | - Heikki Tenhu
- Department of Chemistry
- University of Helsinki
- 00014 Helsingin yliopisto
- Finland
| |
Collapse
|
17
|
Wiedmann S, Luitz M, Kerscher B, Lutz JF, Mülhaupt R. Programmable Thermoresponsive Micelle-Inspired Polymer Ionic Liquids as Molecular Shuttles for Anionic Payloads. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Steffen Wiedmann
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Manuel Luitz
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
| | - Benjamin Kerscher
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
| | - Jean-François Lutz
- Institut Charles Sadron, CNRS, Université de Strasbourg, UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Rolf Mülhaupt
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| |
Collapse
|
18
|
Biswas Y, Banerjee P, Mandal TK. From Polymerizable Ionic Liquids to Poly(ionic liquid)s: Structure-Dependent Thermal, Crystalline, Conductivity, and Solution Thermoresponsive Behaviors. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02351] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yajnaseni Biswas
- Polymer Science Unit, School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Palash Banerjee
- Polymer Science Unit, School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Tarun K. Mandal
- Polymer Science Unit, School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
19
|
Zhong J, Luo H, Tang Q, Lei Z, Tong Z. Counterion-Mediated Self-Assembly of Ion-Containing Block Copolymers on the Basis of the Hofmeister Series. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiaxing Zhong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Haipeng Luo
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Qiuju Tang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Zhentao Lei
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Zaizai Tong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| |
Collapse
|
20
|
Luo H, Tang Q, Zhong J, Lei Z, Zhou J, Tong Z. Interplay of Solvation and Size Effects Induced by the Counterions in Ionic Block Copolymers on the Basis of Hofmeister Series. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Haipeng Luo
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Qiuju Tang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Jiaxing Zhong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Zhentao Lei
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Junyi Zhou
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Zaizai Tong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| |
Collapse
|
21
|
Li JJ, Zhou YN, Luo ZH, Zhu S. A polyelectrolyte-containing copolymer with a gas-switchable lower critical solution temperature-type phase transition. Polym Chem 2019. [DOI: 10.1039/c8py01265b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polyelectrolyte-containing copolymer with a CO2/N2-switchable cloud point, resulting from the gas-induced alternation of hydrophilicity, was prepared.
Collapse
Affiliation(s)
- Jin-Jin Li
- Department of Chemical Engineering
- McMaster University
- Hamilton
- Canada
- Department of Chemical Engineering
| | - Yin-Ning Zhou
- Department of Chemical Engineering
- McMaster University
- Hamilton
- Canada
- Department of Chemical Engineering
| | - Zheng-Hong Luo
- Department of Chemical Engineering
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Shiping Zhu
- Department of Chemical Engineering
- McMaster University
- Hamilton
- Canada
- School of Science and Engineering
| |
Collapse
|
22
|
Jana S, Anas M, Maji T, Banerjee S, Mandal TK. Tryptophan-based styryl homopolymer and polyzwitterions with solvent-induced UCST, ion-induced LCST and pH-induced UCST. Polym Chem 2019. [DOI: 10.1039/c8py01512k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multi-stimuli responsive tryptophan-based styryl homopolymer and polyzwitterions with solvent-induced UCST, ion-induced LCST and pH-induced UCST under different conditions are presented.
Collapse
Affiliation(s)
- Somdeb Jana
- Polymer Science Unit
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Mahammad Anas
- Polymer Science Unit
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Tanmoy Maji
- Polymer Science Unit
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Sanjib Banerjee
- Polymer Science Unit
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Tarun K. Mandal
- Polymer Science Unit
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| |
Collapse
|
23
|
Mogha NK, Yadav N, Sindhu A, Venkatesu P. Does poly(ionic liquid) modulate the non-covalent interactions of chicken egg white lysozyme? Elucidation of biomolecular interactions between biomolecules and macromolecular solvents. NEW J CHEM 2019. [DOI: 10.1039/c9nj04078a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stabilizing and destabilizing effects of different poly(ionic liquid) (PIL) concentrations on chicken egg white lysozyme as a reason for bimolecular interactions.
Collapse
Affiliation(s)
| | - Niketa Yadav
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Anamika Sindhu
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | | |
Collapse
|
24
|
Jana S, Biswas Y, Anas M, Saha A, Mandal TK. Poly[oligo(2-ethyl-2-oxazoline)acrylate]-Based Poly(ionic liquid) Random Copolymers with Coexistent and Tunable Lower Critical Solution Temperature- and Upper Critical Solution Temperature-Type Phase Transitions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12653-12663. [PMID: 30265540 DOI: 10.1021/acs.langmuir.8b03022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The synthesis of a series of dual thermosensitive nonionic-ionic random copolymers with varying compositions by reversible addition-fragmentation chain transfer polymerization is described. These copolymers contain oligo(2-ethyl-2-oxazoline)acrylate (OEtOxA) and either triphenyl-4-vinylbenzylphosphonium chloride ([VBTP][Cl]) or 3- n-butyl-1-vinylimidazolium bromide ([VBuIm][Br]) ionic liquid (IL) units. The copolymers having low content of ionic poly(ionic liquid) (PIL) (P[VBTP][Cl]/P[VBuIm][Br]) segments show only lower critical solution temperature (LCST)-type phase transition with almost linear increase of their cloud points with increasing percentage of ionic PIL segments. Furthermore, LCST-type cloud points ( TcLs) are found very sensitive and tunable with respect to the nature and concentration of halide ions (X- = Cl-, Br-, and I-) and copolymer compositions. However, copolymers with high content of ionic PIL segments show both LCST-type followed by upper critical solution temperature (UCST)-type phase transitions in the presence of halide ions. Dual LCST- and UCST-type phase behaviors are prominent and repeatable for many heating/cooling cycles. Both types of cloud points are found to be sensitive to copolymer compositions, concentration, and nature and concentration of the halide ions. The phase behaviors of both types of copolymers with a very high ionic content (>90%) are exactly similar to that of P[VBTP][Cl] or P[VBuIm][Br] homopolymers showing only UCST-type phase transition in the presence of halide ions. The inherent biocompatibility of the P(OEtOxA) segment along with the interesting dual thermoresponsiveness makes these copolymers highly suitable candidates for biomedical applications including drug delivery.
Collapse
Affiliation(s)
- Somdeb Jana
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| | - Yajnaseni Biswas
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| | - Md Anas
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| | - Anupam Saha
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| | - Tarun K Mandal
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| |
Collapse
|
25
|
Biswas Y, Ghosh P, Mandal TK. Chemical Tuning of Zwitterionic Ionic Liquids for Variable Thermophysical Behaviours, Nanostructured Aggregates and Dual-Stimuli Responsiveness. Chemistry 2018; 24:13322-13335. [PMID: 29971855 DOI: 10.1002/chem.201802367] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/27/2018] [Indexed: 12/22/2022]
Abstract
The design and synthesis of a series of zwitterionic ionic liquids (ZILs) to understand the structure-property relationship towards an increase of the thermal stability, a variation of the glass transition temperature, the shape-tuning of nanostructured aggregates and the tuning of the stimuli responsiveness are demonstrated. The substitution reaction of imidazole with various aliphatic and aromatic bromides followed by the reaction of the corresponding substituted imidazoles with bromoalkyl carboxylic acids of varying spacer length produces the ZILs. In aqueous solution, a ZIL molecule either exist in its ionic liquid (substituted imidazolium bromide) form or its zwitterionic (substituted imidazolium alkyl carboxylate) form with an isoelectric point (pI) depending on the pH value of the solution. Upon changing the pH to near or above the pI, the aqueous ZIL solution undergoes transition from a transparent to a turbid phase due to the formation of insoluble hierarchical nanostructured aggregates of various morphologies, such as spheres, tripods, tetrapods, fern-like, flower-like, dendrites etc. depending on the pH of the solution and the nature of the alkyl/vinyl/aryl substituents. Upon heating the solution a phase transition occurs from turbid to transparent, exhibiting a distinct reversible upper critical solution temperature (UCST)-type cloud point (Tcp ). It is observed that the cloud point varies with the nature of the substituent, an increase of the concentration of the ZIL as well as with changes of the pH of the solution.
Collapse
Affiliation(s)
- Yajnaseni Biswas
- Polymer Science Unit, Indian Association for the Cultivation of, Science, Jadavpur, Kolkata, 700032, India
| | - Pratyush Ghosh
- Polymer Science Unit, Indian Association for the Cultivation of, Science, Jadavpur, Kolkata, 700032, India
| | - Tarun K Mandal
- Polymer Science Unit, Indian Association for the Cultivation of, Science, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
26
|
Quantum chemical study of the impact of protective association on the chemoselective synthesis of carboxybetaine from 2-(dimethylamino)ethanol and acrylic acid. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Maksym P, Tarnacka M, Dzienia A, Erfurt K, Brzęczek-Szafran A, Chrobok A, Zięba A, Kaminski K, Paluch M. High pressure RAFT of sterically hindered ionic monomers. Studying relationship between rigidity of the polymer backbone and conductivity. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.02.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Wang N, Seymour BT, Lewoczko EM, Kent EW, Chen ML, Wang JH, Zhao B. Zwitterionic poly(sulfobetaine methacrylate)s in water: from upper critical solution temperature (UCST) to lower critical solution temperature (LCST) with increasing length of one alkyl substituent on the nitrogen atom. Polym Chem 2018. [DOI: 10.1039/c8py01211c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Increasing the alkyl length on nitrogen of the polymer changes behaviour from UCST, to soluble, LCST, and insoluble.
Collapse
Affiliation(s)
- Ning Wang
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
- Research Center for Analytical Sciences
| | | | | | - Ethan W. Kent
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
| | - Ming-Li Chen
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang
| | - Jian-Hua Wang
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang
| | - Bin Zhao
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
| |
Collapse
|
29
|
Jana S, Biswas Y, Mandal TK. Methionine-based cationic polypeptide/polypeptide block copolymer with triple-stimuli responsiveness: DNA polyplexation and phototriggered release. Polym Chem 2018. [DOI: 10.1039/c8py00178b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This work describes the synthesis of a multi-stimuli responsive methionine-based cationic polypeptide and its polypeptide block copolymer, followed by subsequent DNA polyplexation and phototriggered release.
Collapse
Affiliation(s)
- Somdeb Jana
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Yajnaseni Biswas
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Tarun K. Mandal
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| |
Collapse
|