1
|
Katsuhara S, Sunagawa N, Igarashi K, Takeuchi Y, Takahashi K, Yamamoto T, Li F, Tajima K, Isono T, Satoh T. Effect of degree of substitution on the microphase separation and mechanical properties of cellooligosaccharide acetate-based elastomers. Carbohydr Polym 2023; 316:120976. [PMID: 37321706 DOI: 10.1016/j.carbpol.2023.120976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 04/30/2023] [Indexed: 06/17/2023]
Abstract
Thermoplastic elastomers (TPEs) have long been used in a wide range of industries. However, most existing TPEs are petroleum-derived polymers. To realize environmentally benign alternatives to conventional TPEs, cellulose acetate is a promising TPE hard segment because of its sufficient mechanical properties, availability from renewable sources, and biodegradability in natural environments. Because the degree of substitution (DS) of cellulose acetate governs a range of physical properties, it is a useful parameter for designing novel cellulose acetate-based TPEs. In this study, we synthesized cellulose acetate-based ABA-type triblock copolymers (AcCelx-b-PDL-b-AcCelx) containing a celloologosaccharide acetate hard A segment (AcCelx, where x is the DS; x = 3.0, 2.6, and 2.3) and a poly(δ-decanolactone) (PDL) soft B segment. Small-angle X-ray scattering showed that decreasing the DS of AcCelx-b-PDL-b-AcCelx resulted in the formation of a more ordered microphase-separated structure. Owing to the microphase separation of the hard cellulosic and soft PDL segments, all the AcCelx-b-PDL-b-AcCelx samples exhibited elastomer-like properties. Moreover, the decrease in DS improved toughness and suppressed stress relaxation. Furthermore, preliminary biodegradation tests in an aqueous environment revealed that the decrease in DS endowed AcCelx-b-PDL-b-AcCelx with greater biodegradability potential. This work demonstrates the usefulness of cellulose acetate-based TPEs as next-generation sustainable materials.
Collapse
Affiliation(s)
- Satoshi Katsuhara
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; VTT Technical Research Centre of Finland Ltd., VTT FI-02044, Finland
| | - Yutaka Takeuchi
- Noto Center for Fisheries Science and Technology, Faculty of Biological Science and Technology, Kanazawa University, Noto-cho, Ishikawa 927-0552, Japan
| | - Kenji Takahashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takuya Yamamoto
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Feng Li
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kenji Tajima
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| |
Collapse
|
2
|
Angelopoulou PP, Moutsios I, Manesi GM, Ivanov DA, Sakellariou G, Avgeropoulos A. Designing high χ copolymer materials for nanotechnology applications: A systematic bulk vs. thin films approach. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Tunable Thin Film Periodicities by Controlling the Orientation of Cylindrical Domains in Side Chain Liquid Crystalline Block Copolymers. INT J POLYM SCI 2022. [DOI: 10.1155/2022/8286518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A facile approach to block copolymer (BCP) domain orientation control in thin films has been demonstrated by employing a BCP with liquid crystalline semifluorinated side chains by tuning the composition of the copolymers of the bottom surface layer (BSL). 1H,1H,2H,2H-Perfluorodecanethiol was attached to a precursor polymer, polystyrene-block-poly(glycidyl methacrylate) (PS-b-PGMA), to obtain a novel BCP with a C8F17-containing liquid crystal (LC) side chain (PS-b-P8FMA). Anisotropic hexagonally packed cylinder domains in a bulk state were first characterized by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). The observed morphology transition of BCPs with different fluorinated side chain lengths of –CF3, –C4F9, and –C6F13 suggested the decisive effects of LC side chain ordering on the anisotropic nanostructures. In the thin film study, poly(methyl methacrylate-random-2,2,2-trifluoroethyl methacrylate-random-methacrylic acid) (PMMA-ran-PTFEMA-ran-PMAA) solution was used as BSLs for tuning the desired periodicities. The surface free energy (SFE) of BSL was simply tailored by changing the composition of comonomers. In atomic force microscopy (AFM) characterization, long-range ordered perpendicularly oriented BCP domains in a hexagonally packed array or parallel oriented BCP domains as striation patterns were easily fabricated on non-preferential or preferential BSL, respectively. The study presents a novel approach to tunable thin film periodicities without changing or modifying BCPs, which is desired in next-generation BCP lithography.
Collapse
|
4
|
Isono T, Komaki R, Kawakami N, Chen K, Chen HL, Lee C, Suzuki K, Ree BJ, Mamiya H, Yamamoto T, Borsali R, Tajima K, Satoh T. Tailored Solid-State Carbohydrate Nanostructures Based on Star-Shaped Discrete Block Co-Oligomers. Biomacromolecules 2022; 23:3978-3989. [PMID: 36039560 DOI: 10.1021/acs.biomac.2c00813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbohydrates are key building blocks for advanced functional materials owing to their biological functions and unique material properties. Here, we propose a star-shaped discrete block co-oligomer (BCO) platform to access carbohydrate nanostructures in bulk and thin-film states via the microphase separation of immiscible carbohydrate and hydrophobic blocks (maltooligosaccharides with 1-4 glucose units and solanesol, respectively). BCOs with various star-shaped architectures and saccharide volume fractions were synthesized using a modular approach. In the bulk, the BCOs self-assembled into common lamellar, cylindrical, and spherical carbohydrate microdomains as well as double gyroid, hexagonally perforated lamellar, and Fddd network morphologies with domain spacings of ∼7 nm. In thin films, long-range-ordered periodic carbohydrate microdomains were fabricated via spin coating. Such controlled spatial arrangements of functional carbohydrate moieties on the nanoscale have great application potential in biomedical and nanofabrication fields.
Collapse
Affiliation(s)
- Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Ryoya Komaki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Nao Kawakami
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kai Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin-Lung Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chaehun Lee
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kazushige Suzuki
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Brian J Ree
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Hiroaki Mamiya
- National Institute for Materials Science, Tsukuba 305-0047, Japan
| | - Takuya Yamamoto
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | | | - Kenji Tajima
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
5
|
Majoinen J, Bouilhac C, Rannou P, Borsali R. Unidirectional Perpendicularly Aligned Lamella-Structured Oligosaccharide (A) ABA Triblock Elastomer (B) Thin Films Utilizing Triazolium +/TFSI - Ionic Nanochannels. ACS Macro Lett 2022; 11:140-148. [PMID: 35574795 PMCID: PMC8772381 DOI: 10.1021/acsmacrolett.1c00712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022]
Abstract
We designed and synthesized high χ-low N-maltoheptaose-(triazolium+/N(SO2CF3)2-)-polyisoprene-(triazolium+/N(SO2CF3)2-)-maltoheptaose ABA triblock elastomers featuring triazolium+/N(SO2CF3)2- (TFSI-) counteranion ionic interfaces separating their constituting polymeric sub-blocks. Spin-coated and solvent-vapor-annealed (SVA) MH1.2k-(T+/TFSI-)-PI4.3k-(T+/TFSI-)-MH1.2k thin films demonstrate interface-induced charge cohesion through ca. 1 nm "thick" ionic nanochannels which facilitate the self-assembly of a perpendicularly aligned lamellar structure. Atomic force microscopy (AFM) and (grazing-incidence) small-angle X-ray scattering ((GI)SAXS) characterizations of MH1.2k-(T+/TFSI-)-PI4.3k-(T+/TFSI-)-MH1.2k and pristine triBCP analogous thin films revealed sub-10 nm block copolymer (BCP) self-assembly and unidirectionally aligned nanostructures developed over several μm2 areas. Solvated TFSI- counterions enhance the oligosaccharide sub-block packing during SVA. The overall BCP phase behavior was mapped through SAXS characterizations comparing di- vs triblock polymeric architectures, a middle PI sub-block with two different molecular masses, and TFSI- or I- counteranion effects. This work highlights the benefits of inducing single-point electrostatic interactions within chemical structures of block copolymers to master the long-range self-assembly of prescribed morphologies.
Collapse
Affiliation(s)
- Johanna Majoinen
- Université
Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
- Université
Grenoble Alpes, CNRS, CEA, INAC-SyMMES, 38000 Grenoble, France
| | - Cécile Bouilhac
- ICGM,
Université Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Patrice Rannou
- Université
Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
- Université
Grenoble Alpes, CNRS, CEA, INAC-SyMMES, 38000 Grenoble, France
| | | |
Collapse
|
6
|
Self-assembly of carbohydrate-based block copolymer systems: glyconanoparticles and highly nanostructured thin films. Polym J 2022. [DOI: 10.1038/s41428-021-00604-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Nowak SR, Lachmayr KK, Yager KG, Sita LR. Stable Thermotropic 3D and 2D Double Gyroid Nanostructures with Sub‐2‐nm Feature Size from Scalable Sugar–Polyolefin Conjugates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Samantha R. Nowak
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kätchen K. Lachmayr
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kevin G. Yager
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Lawrence R. Sita
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| |
Collapse
|
8
|
Nowak SR, Lachmayr KK, Yager KG, Sita LR. Stable Thermotropic 3D and 2D Double Gyroid Nanostructures with Sub‐2‐nm Feature Size from Scalable Sugar–Polyolefin Conjugates. Angew Chem Int Ed Engl 2021; 60:8710-8716. [DOI: 10.1002/anie.202016384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Samantha R. Nowak
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kätchen K. Lachmayr
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kevin G. Yager
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Lawrence R. Sita
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| |
Collapse
|
9
|
Hsu LC, Isono T, Lin YC, Kobayashi S, Chiang YC, Jiang DH, Hung CC, Ercan E, Yang WC, Hsieh HC, Tajima K, Satoh T, Chen WC. Stretchable OFET Memories: Tuning the Morphology and the Charge-Trapping Ability of Conjugated Block Copolymers through Soft Segment Branching. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2932-2943. [PMID: 33423476 DOI: 10.1021/acsami.0c18820] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The mechanical properties and structural design flexibility of charge-trapping polymer electrets have led to their widespread use in organic field-effect transistor (OFET) memories. For example, in the electrets of polyfluorene-based conjugated/insulating block copolymers (BCPs), the confined fiberlike polyfluorene nanostructures in the insulating polymer matrix act as effective hole-trapping sites, leading to controllable memory performance through the design of BCPs. However, few studies have reported intrinsically stretchable charge-trapping materials and their memory device applications, and a practical method to correlate the thin-film morphology of BCP electrets with their charge-trapping ability has not yet been developed. In this study, a series of new conjugated/insulating BCPs, poly(9,9-di-n-hexyl-2,7-fluorene)-block-poly(δ-decanolactone)s (PF-b-PDLx, x = 1-3), as stretchable hole-trapping materials are reported. The linear and branched PDL blocks with comparable molecular weights were used to investigate the effect of polymer architecture on morphology and device performance. Moreover, the coverage area of the polyfluorene nanofibers on the BCP films was extracted from atomic force microscopy images, which can be correlated with the trapping density of the polymer electrets. The branched PDL segments not only improve stretchability but also tailor crystallinity and phase separation of the BCPs, thus increasing their charge-trapping ability. The OFET memory device with PF-b-PDL3 as the electret layer exhibited the largest memory window (102 V) and could retain its performance at up to 100% strain. This research highlights the importance of the BCP design for developing stretchable charge-trapping materials.
Collapse
Affiliation(s)
- Li-Che Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Yan-Cheng Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Saburo Kobayashi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Yun-Chi Chiang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Dai-Hua Jiang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Chih-Chien Hung
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Ender Ercan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Chen Yang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hui-Ching Hsieh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kenji Tajima
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Wen-Chang Chen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
10
|
Arai S, Sakakibara S, Mareschal R, Ooi T, Zinn M, Matsumoto K. Biosynthesis of Random-Homo Block Copolymer Poly[Glycolate- ran-3-Hydroxybutyrate (3HB)]- b-Poly(3HB) Using Sequence-Regulating Chimeric Polyhydroxyalkanoate Synthase in Escherichia coli. Front Bioeng Biotechnol 2020; 8:612991. [PMID: 33364233 PMCID: PMC7752996 DOI: 10.3389/fbioe.2020.612991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Glycolate (GL)-containing polyhydroxyalkanoate (PHA) was synthesized in Escherichia coli expressing the engineered chimeric PHA synthase PhaC AR and coenzyme A transferase. The cells produced poly[GL-co-3-hydroxybutyrate (3HB)] with the supplementation of GL and 3HB, thus demonstrating that PhaC AR is the first known class I PHA synthase that is capable of incorporating GL units. The triad sequence analysis using 1H nuclear magnetic resonance indicated that the obtained polymer was composed of two distinct regions, a P(GL-ran-3HB) random segment and P(3HB) homopolymer segment. The random segment was estimated to contain a 71 mol% GL molar ratio, which was much greater than the value (15 mol%) previously achieved by using PhaC1 P s STQK. Differential scanning calorimetry analysis of the polymer films supported the presence of random copolymer and homopolymer phases. The solvent fractionation of the polymer indicated the presence of a covalent linkage between these segments. Therefore, it was concluded that PhaC AR synthesized a novel random-homo block copolymer, P(GL-ran-3HB)-b-P(3HB).
Collapse
Affiliation(s)
- Shuzo Arai
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Sayaka Sakakibara
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Robin Mareschal
- Department of Engineering, Hokkaido University, Sapporo, Japan
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sion, Switzerland
| | - Toshihiko Ooi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Manfred Zinn
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sion, Switzerland
| | - Ken’ichiro Matsumoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Rapid access to discrete and monodisperse block co-oligomers from sugar and terpenoid toward ultrasmall periodic nanostructures. Commun Chem 2020; 3:135. [PMID: 36703322 PMCID: PMC9814839 DOI: 10.1038/s42004-020-00385-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/14/2020] [Indexed: 01/29/2023] Open
Abstract
Discrete block co-oligomers (BCOs) are gaining considerable attention due to their potential to form highly ordered ultrasmall nanostructures suitable for lithographic templates. However, laborious synthetic routes present a major hurdle to the practical application. Herein, we report a readily available discrete BCO system that is capable of forming various self-assembled nanostructures with ultrasmall periodicity. Click coupling of propargyl-functionalized sugars (containing 1-7 glucose units) and azido-functionalized terpenoids (containing 3, 4, and 9 isoprene units) afforded the discrete and monodisperse BCOs with a desired total degree of polymerization and block ratio. These BCOs microphase separated into lamellar, gyroid, and cylindrical morphologies with the domain spacing (d) of 4.2-7.5 nm. Considering easy synthesis and rich phase behavior, presented BCO systems could be highly promising for application to diverse ~4-nm nanofabrications.
Collapse
|
12
|
Hsu LC, Kobayashi S, Isono T, Chiang YC, Ree BJ, Satoh T, Chen WC. Highly Stretchable Semiconducting Polymers for Field-Effect Transistors through Branched Soft–Hard–Soft Type Triblock Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00381] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Li-Che Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Saburo Kobayashi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Yun-Chi Chiang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Brian J. Ree
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Wen-Chang Chen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
13
|
Sweet Pluronic poly(propylene oxide)-b-oligosaccharide block copolymer systems: Toward sub-4 nm thin-film nanopattern resolution. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Isono T, Nakahira S, Hsieh HC, Katsuhara S, Mamiya H, Yamamoto T, Chen WC, Borsali R, Tajima K, Satoh T. Carbohydrates as Hard Segments for Sustainable Elastomers: Carbohydrates Direct the Self-Assembly and Mechanical Properties of Fully Bio-Based Block Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00611] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Hui-Ching Hsieh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | | | - Hiroaki Mamiya
- National Institute for Materials Science, Tsukuba 305-0047, Japan
| | | | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | |
Collapse
|
15
|
Chuang TH, Chiang YC, Hsieh HC, Isono T, Huang CW, Borsali R, Satoh T, Chen WC. Nanostructure- and Orientation-Controlled Resistive Memory Behaviors of Carbohydrate- block-Polystyrene with Different Molecular Weights via Solvent Annealing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23217-23224. [PMID: 32326698 DOI: 10.1021/acsami.0c04551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report the resistive electrical memory characteristics controlled by the self-assembled nanostructures of maltoheptaose-block-polystyrene (MH-b-PS) block copolymers, where the MH and PS blocks provide the charge-trapping and the insulating tunneling layer, respectively. A simple solvent annealing process, with various annealing conditions, were introduced for MH-b-PS thin films to achieve disordered, orientated cylinders and ordered-packed spheres morphologies. More details about the self-assembled MH-b-PS nanostructures, coupled with different volume fractions between MH and PS blocks, were investigated using atomic force microscopy and grazing-incidence small-angle X-ray scattering analyses. Moreover, various electrical memory behaviors including nonvolatile write-once-read-many-times (WORM) and Flash, and volatile dynamic-random-access-memory (DRAM) could be obtained by the same material (MH-b-PS3k). This study establishes a detailed relationship between the nanostructure of the MH-b-PS-based block copolymers and their memory behavior of the resistive memory devices.
Collapse
Affiliation(s)
- Tsung-Han Chuang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Chi Chiang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hui-Ching Hsieh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Chao-Wei Huang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | | | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
16
|
Watanabe K, Katsuhara S, Mamiya H, Yamamoto T, Tajima K, Isono T, Satoh T. Downsizing feature of microphase-separated structures via intramolecular crosslinking of block copolymers. Chem Sci 2019; 10:3330-3339. [PMID: 30996920 PMCID: PMC6429781 DOI: 10.1039/c8sc05016c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/11/2019] [Indexed: 11/21/2022] Open
Abstract
A novel strategy for downsizing the feature of microphase-separated structures was developed via the intramolecular crosslinking reaction of block copolymers (BCPs) without changing the molecular weight. A series of BCPs consisting of poly[styrene-st-(p-3-butenyl styrene)] and poly(rac-lactide) (SBS-LA) was subjected to Ru-catalyzed olefin metathesis under highly diluted conditions to produce intramolecularly crosslinked BCPs (SBS(cl)-LAs). Small-angle X-ray scattering measurement and transmission electron microscopy observation of the SBS(cl)-LAs revealed feature size reduction in lamellar (LAM) and hexagonally close-packed cylinder (HEX) structures in the bulk state, which was surely due to the restricted chain dimensions of the intramolecularly crosslinked SBS block. Notably, the degree of size reduction was controllable by varying the crosslink density, with a maximum decrease of 22% in the LAM spacing. In addition, we successfully observed the downsizing of the HEX structure in the thin film state using atomic force microscopy, indicating the applicability of the present methodology to next-generation lithography technology.
Collapse
Affiliation(s)
- Kodai Watanabe
- Faculty of Engineering and Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-8628 , Japan . ;
| | - Satoshi Katsuhara
- Faculty of Engineering and Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-8628 , Japan . ;
| | - Hiroaki Mamiya
- Quantum Beam Unit , Advanced Key Technologies Division , National Institute for Materials Science , Ibaraki 305-0047 , Japan
| | - Takuya Yamamoto
- Faculty of Engineering and Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-8628 , Japan . ;
| | - Kenji Tajima
- Faculty of Engineering and Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-8628 , Japan . ;
| | - Takuya Isono
- Faculty of Engineering and Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-8628 , Japan . ;
| | - Toshifumi Satoh
- Faculty of Engineering and Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-8628 , Japan . ;
| |
Collapse
|
17
|
Yoshida K, Tanaka S, Yamamoto T, Tajima K, Borsali R, Isono T, Satoh T. Chain-End Functionalization with a Saccharide for 10 nm Microphase Separation: “Classical” PS-b-PMMA versus PS-b-PMMA-Saccharide. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kohei Yoshida
- Graduate School of Chemical Sciences and Engineering and Faculty of Engineering, Hokkaido University, Hokkaido 080-8628, Japan
| | - Shunma Tanaka
- Graduate School of Chemical Sciences and Engineering and Faculty of Engineering, Hokkaido University, Hokkaido 080-8628, Japan
| | - Takuya Yamamoto
- Graduate School of Chemical Sciences and Engineering and Faculty of Engineering, Hokkaido University, Hokkaido 080-8628, Japan
| | - Kenji Tajima
- Graduate School of Chemical Sciences and Engineering and Faculty of Engineering, Hokkaido University, Hokkaido 080-8628, Japan
| | | | - Takuya Isono
- Graduate School of Chemical Sciences and Engineering and Faculty of Engineering, Hokkaido University, Hokkaido 080-8628, Japan
| | - Toshifumi Satoh
- Graduate School of Chemical Sciences and Engineering and Faculty of Engineering, Hokkaido University, Hokkaido 080-8628, Japan
| |
Collapse
|
18
|
Hung CC, Nakahira S, Chiu YC, Isono T, Wu HC, Watanabe K, Chiang YC, Takashima S, Borsali R, Tung SH, Satoh T, Chen WC. Control over Molecular Architectures of Carbohydrate-Based Block Copolymers for Stretchable Electrical Memory Devices. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00874] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | - Saki Nakahira
- Faculty of Engineering and Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Yu-Cheng Chiu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Takuya Isono
- Faculty of Engineering and Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | | | - Kodai Watanabe
- Faculty of Engineering and Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | | | - Shoichi Takashima
- Faculty of Engineering and Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | | | | | - Toshifumi Satoh
- Faculty of Engineering and Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | | |
Collapse
|