1
|
Li B, Zhou Y, Xu Y, Li X, Li Z, Gu L, Ma W, Mei R. Transition-Metal-Free Electrochemical Selenylative Cyclization of Alkynyl Phosphonates. J Org Chem 2023; 88:15414-15427. [PMID: 37871259 DOI: 10.1021/acs.joc.3c01946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Unprecedented regioselective electrochemical tandem selenation/cyclization of alkynyl phosphonates with diselenide is described here. These obtained selenoether products can be chemo-selectively converted into halogen-functionalized cyclic enol phosphonates under our electrochemical conditions. These protocols provide straightforward access to valuable cyclic enol phosphonate or phosphaisocoumarins under the electrochemical and transition-metal-free conditions. The robustness of these transformations was illustrated by their compatibility with various complex natural products and bioactive molecules. The selenoether and halogen functional groups allow the further diversification of the phosphorus heterocycles thus obtained.
Collapse
Affiliation(s)
- Bo Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Yunhao Zhou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Yue Xu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Xiang Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Zheyu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Ruhuai Mei
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| |
Collapse
|
2
|
Haudum S, Strasser P, Teasdale I. Phosphorus and Silicon-Based Macromolecules as Degradable Biomedical Polymers. Macromol Biosci 2023; 23:e2300127. [PMID: 37326117 DOI: 10.1002/mabi.202300127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Synthetic polymers are indispensable in biomedical applications because they can be fabricated with consistent and reproducible properties, facile scalability, and customizable functionality to perform diverse tasks. However, currently available synthetic polymers have limitations, most notably when timely biodegradation is required. Despite there being, in principle, an entire periodic table to choose from, with the obvious exception of silicones, nearly all known synthetic polymers are combinations of carbon, nitrogen, and oxygen in the main chain. Expanding this to main-group heteroatoms can open the way to novel material properties. Herein the authors report on research to incorporate the chemically versatile and abundant silicon and phosphorus into polymers to induce cleavability into the polymer main chain. Less stable polymers, which degrade in a timely manner in mild biological environments, have considerable potential in biomedical applications. Herein the basic chemistry behind these materials is described and some recent studies into their medical applications are highlighted.
Collapse
Affiliation(s)
- Stephan Haudum
- Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| | - Paul Strasser
- Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| | - Ian Teasdale
- Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| |
Collapse
|
3
|
Rheinberger T, Flögel U, Koshkina O, Wurm FR. Real-time 31P NMR reveals different gradient strengths in polyphosphoester copolymers as potential MRI-traceable nanomaterials. Commun Chem 2023; 6:182. [PMID: 37658116 PMCID: PMC10474120 DOI: 10.1038/s42004-023-00954-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/05/2023] [Indexed: 09/03/2023] Open
Abstract
Polyphosphoesters (PPEs) are used in tissue engineering and drug delivery, as polyelectrolytes, and flame-retardants. Mostly polyphosphates have been investigated but copolymers involving different PPE subclasses have been rarely explored and the reactivity ratios of different cyclic phospholanes have not been reported. We synthesized binary and ternary PPE copolymers using cyclic comonomers, including side-chain phosphonates, phosphates, thiophosphate, and in-chain phosphonates, through organocatalyzed ring-opening copolymerization. Reactivity ratios were determined for all cases, including ternary PPE copolymers, using different nonterminal models. By combining different comonomers and organocatalysts, we created gradient copolymers with adjustable amphiphilicity and microstructure. Reactivity ratios ranging from 0.02 to 44 were observed for different comonomer sets. Statistical ring-opening copolymerization enabled the synthesis of amphiphilic gradient copolymers in a one-pot procedure, exhibiting tunable interfacial and magnetic resonance imaging (MRI) properties. These copolymers self-assembled in aqueous solutions, 31 P MRI imaging confirmed their potential as MRI-traceable nanostructures. This systematic study expands the possibilities of PPE-copolymers for drug delivery and theranostics.
Collapse
Affiliation(s)
- Timo Rheinberger
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, Netherlands
| | - Ulrich Flögel
- Department of Molecular Cardiology, Experimental Cardiovascular Imaging, Heinrich-Heine-University, Düsseldorf, Germany
| | - Olga Koshkina
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, Netherlands
| | - Frederik R Wurm
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, Netherlands.
| |
Collapse
|
4
|
Xu J. Synthesis of medium and large phostams, phostones, and phostines. Beilstein J Org Chem 2023; 19:687-699. [PMID: 37229219 PMCID: PMC10204206 DOI: 10.3762/bjoc.19.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Phostams, phostones, and phostines are a series of 1,2-azaphosphaheterocycle and 1,2-oxaphosphaheterocycle 2-oxide derivatives. They are phosphorus analogues of lactams and lactones and important biologically active compounds. The strategies for the synthesis of medium and large phostams, phostones, and phostines are summarized. They include cyclizations and annulations. Cyclizations achieve ring construction through the formations of C-C, C-O, P-C, and P-O bonds in the rings, while annulations build the rings via [5 + 2], [6 + 1], and [7 + 1] fashions with the stepwise formation of two ring bonds. This review includes the recent syntheses of seven to fourteen-membered phostam, phostone, and phostine derivatives.
Collapse
Affiliation(s)
- Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
- College of Sciences, Henan Agricultural University, Zhengzhou 450002, P. R. China
| |
Collapse
|
5
|
Rheinberger T, Deuker M, Wurm FR. The microstructure of polyphosphoesters controls polymer hydrolysis kinetics from minutes to years. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
6
|
Nakamura K, Matsushima Y. Enantioselective total syntheses of (S)-phosphonothrixin and unexpected cyclic derivative (S)-cyclic phosphonothrixin via enzymatic resolution. Biosci Biotechnol Biochem 2023; 87:138-147. [PMID: 36398742 DOI: 10.1093/bbb/zbac188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
(S)-Phosphonothrixin is a phosphonate natural product produced by Saccharothrix sp. ST-888 that exhibits herbicidal activity. The previously reported asymmetric synthesis of (S)-phosphonothrixin is laborious and difficult to reproduce. In this study, we developed a scalable and concise enantioselective total synthesis of (S)-phosphonothrixin via two different synthetic routes by the enzymatic resolution of a known racemic epoxy alcohol. The second-generation synthesis was more efficient in terms of the overall yield (15%) and the number of steps (7) and afforded a unique cyclic phosphonate (phostone) as the product of the C-P bond formation reaction, which was converted to (S)-cyclic phosphonothrixin. Both (S)-phosphonothrixin and (S)-cyclic phosphonothrixin induced chlorosis in the plant Arabidopsis thaliana. However, (S)-cyclic phosphonothrixin exhibited lower activity than (S)-phosphonothrixin owing to its fixed conformation, as evidenced by a structure-activity relationship study. This study paves the way for the elucidation of the detailed mode of action of (S)-phosphonothrixin.
Collapse
Affiliation(s)
- Koki Nakamura
- Department of Agricultural Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Yoshitaka Matsushima
- Department of Agricultural Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
7
|
Dirauf M, Muljajew I, Weber C, Schubert US. Recent advances in degradable synthetic polymers for biomedical applications – Beyond polyesters. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Kostoudi S, Pampalakis G. Improvements, Variations and Biomedical Applications of the Michaelis-Arbuzov Reaction. Int J Mol Sci 2022; 23:ijms23063395. [PMID: 35328816 PMCID: PMC8955222 DOI: 10.3390/ijms23063395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Compounds bearing the phosphorus–carbon (P–C) bond have important pharmacological, biochemical, and toxicological properties. Historically, the most notable reaction for the formation of the P–C bond is the Michaelis–Arbuzov reaction, first described in 1898. The classical Michaelis–Arbuzov reaction entails a reaction between an alkyl halide and a trialkyl phosphite to yield a dialkylalkylphosphonate. Nonetheless, deviations from the classical mechanisms and new modifications have appeared that allowed the expansion of the library of reactants and consequently the chemical space of the yielded products. These involve the use of Lewis acid catalysts, green methods, ultrasound, microwave, photochemically-assisted reactions, aryne-based reactions, etc. Here, a detailed presentation of the Michaelis–Arbuzov reaction and its developments and applications in the synthesis of biomedically important agents is provided. Certain examples of such applications include the development of alkylphosphonofluoridates as serine hydrolase inhibitors and activity-based probes, and the P–C containing antiviral and anticancer agents.
Collapse
|
9
|
|
10
|
Hiranphinyophat S, Iwasaki Y. Controlled biointerfaces with biomimetic phosphorus-containing polymers. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:301-316. [PMID: 34104114 PMCID: PMC8168784 DOI: 10.1080/14686996.2021.1908095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 06/02/2023]
Abstract
Phosphorus is a ubiquitous and one of the most common elements found in living organisms. Almost all molecules containing phosphorus in our body exist as analogs of phosphate salts or phosphoesters. Their functions are versatile and important, being responsible for forming the genetic code, cell membrane, and mineral components of hard tissue. Several materials inspired from these phosphorus-containing biomolecules have been recently developed. These materials have shown unique properties at the biointerface, such as nonfouling ability, blood compatibility, lubricity, mineralization induction capability, and bone affinity. Several unfavorable events occur at the interface of materials and living organisms because most of these materials have not been designed while taking host responses into account. These unfavorable events are directly linked to reducing functions and shorten the usable periods of medical devices. Biomimetic phosphorus-containing polymers can improve the reliability of materials in biological systems. In addition, phosphorus-containing biomimetic polymers are useful not only for improving the biocompatibility of material surfaces but also for adding new functions due to the flexibility in molecular design. In this review, we describe the recent advances in the control of biointerfacial phenomena with phosphorus-containing polymers. We especially focus on zwitterioninc phosphorylcholine polymers and polyphosphoesters.
Collapse
Affiliation(s)
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Japan
| |
Collapse
|
11
|
Pelosi C, Duce C, Wurm FR, Tinè MR. Effect of Polymer Hydrophilicity and Molar Mass on the Properties of the Protein in Protein-Polymer Conjugates: The Case of PPEylated Myoglobin. Biomacromolecules 2021; 22:1932-1943. [PMID: 33830737 PMCID: PMC8154264 DOI: 10.1021/acs.biomac.1c00058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/07/2021] [Indexed: 11/28/2022]
Abstract
Polyphosphoesters (PPEs), a versatile class of biodegradable and biocompatible polymers, have been proposed as alternatives to poly(ethylene glycol) (PEG), which is suspected to be responsible for anaphylactic reactions in some patients after the administration of PEGylated compounds, e.g., in the current Covid-19 vaccines. We present the synthesis and characterization of a novel set of protein-polymer conjugates using the model protein myoglobin and a set of PPEs with different hydrophilicity and molar mass. We report an extensive evaluation of the (bio)physical properties of the protein within the conjugates, studying its conformation, residual activity, and thermal stability by complementary techniques (UV-vis spectroscopy, nano-differential scanning calorimetry, and fluorometry). The data underline the systematic influence of polymer hydrophilicity on protein properties. The more hydrophobic polymers destabilize the protein, the more hydrophilic PPEs protect against thermally induced aggregation and proteolytic degradation. This basic study aims at guiding the design of future PPEylated drugs and protein conjugates.
Collapse
Affiliation(s)
- Chiara Pelosi
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via Moruzzi, Pisa 56124, Italy
| | - Celia Duce
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via Moruzzi, Pisa 56124, Italy
| | - Frederik R. Wurm
- Sustainable
Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute
for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Maria R. Tinè
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via Moruzzi, Pisa 56124, Italy
| |
Collapse
|
12
|
Pelosi C, Tinè MR, Wurm FR. Main-chain water-soluble polyphosphoesters: Multi-functional polymers as degradable PEG-alternatives for biomedical applications. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110079] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Tee HT, Zipp R, Koynov K, Tremel W, Wurm FR. Poly(methyl ethylene phosphate) hydrogels: Degradable and cell-repellent alternatives to PEG-hydrogels. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Steinmann M, Wurm FR. Water-soluble and degradable polyphosphorodiamidates via thiol-ene polyaddition. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Liu Z, Wu M, Xue Y, Chen C, Wurm FR, Lan M, Zhang W. Hydrophilic polyphosphoester-conjugated fluorinated chlorin as an entirely biodegradable nano-photosensitizer for reliable and efficient photodynamic therapy. Chem Commun (Camb) 2020; 56:2415-2418. [PMID: 31994584 DOI: 10.1039/d0cc00142b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An entirely biodegradable nano-photosensitizer platform (PPE-FP2) was fabricated by conjugating the photosensitizer TFPC to hydrophilic polyphosphoesters (PPEs) for efficiently liberating photosensitizers at the tumor site. The complete biodegradability of PPE-FP2 avoided residual nanoparticles in vivo after therapy, realizing reliable and effective photodynamic therapy.
Collapse
Affiliation(s)
- Zhiyong Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Dylan J. Walsh
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michael G. Hyatt
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Susannah A. Miller
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Bernhard C, Roeters SJ, Bauer KN, Weidner T, Bonn M, Wurm FR, Gonella G. Both Poly(ethylene glycol) and Poly(methyl ethylene phosphate) Guide Oriented Adsorption of Specific Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14092-14097. [PMID: 31568725 DOI: 10.1021/acs.langmuir.9b02275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Developing new functional biomaterials requires the ability to simultaneously repel unwanted and guide wanted protein adsorption. Here, we systematically interrogate the factors determining the protein adsorption by comparing the behaviors of different polymeric surfaces, poly(ethylene glycol) and a poly(phosphoester), and five different natural proteins. Interestingly we observe that, at densities comparable to those used in nanocarrier functionalization, the same proteins are either adsorbed (fibrinogen, human serum albumin, and transferrin) or repelled (immunoglobulin G and lysozyme) by both polymers. However, when adsorption takes place, the specific surface dictates the amount and orientation of each protein.
Collapse
Affiliation(s)
- Christoph Bernhard
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Steven J Roeters
- Department of Chemistry , Aarhus University , 8000 Aarhus C , Denmark
| | - Kristin N Bauer
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Tobias Weidner
- Department of Chemistry , Aarhus University , 8000 Aarhus C , Denmark
| | - Mischa Bonn
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Grazia Gonella
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| |
Collapse
|
18
|
Aromatic vs. Aliphatic Hyperbranched Polyphosphoesters as Flame Retardants in Epoxy Resins. Molecules 2019; 24:molecules24213901. [PMID: 31671913 PMCID: PMC6864611 DOI: 10.3390/molecules24213901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/03/2022] Open
Abstract
The current trend for future flame retardants (FRs) goes to novel efficient halogen-free materials, due to the ban of several halogenated FRs. Among the most promising alternatives are phosphorus-based FRs, and of those, polymeric materials with complex shape have been recently reported. Herein, we present novel halogen-free aromatic and aliphatic hyperbranched polyphosphoesters (hbPPEs), which were synthesized by olefin metathesis polymerization and investigated them as a FR in epoxy resins. We compare their efficiency (aliphatic vs. aromatic) and further assess the differences between the monomeric compounds and the hbPPEs. The decomposition and vaporizing behavior of a compound is an important factor in its flame-retardant behavior, but also the interaction with the pyrolyzing matrix has a significant influence on the performance. Therefore, the challenge in designing a FR is to optimize the chemical structure and its decomposition pathway to the matrix, with regards to time and temperature. This behavior becomes obvious in this study, and explains the superior gas phase activity of the aliphatic FRs.
Collapse
|
19
|
Beament J, Wolf T, Markwart JC, Wurm FR, Jones MD, Buchard A. Copolymerization of Cyclic Phosphonate and Lactide: Synthetic Strategies toward Control of Amphiphilic Microstructure. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James Beament
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U. K
| | - Thomas Wolf
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Jens C. Markwart
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Frederik R. Wurm
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Matthew D. Jones
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U. K
| | - Antoine Buchard
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U. K
| |
Collapse
|
20
|
Bernhard C, Bauer KN, Bonn M, Wurm FR, Gonella G. Interfacial Conformation of Hydrophilic Polyphosphoesters Affects Blood Protein Adsorption. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1624-1629. [PMID: 30516968 DOI: 10.1021/acsami.8b17146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Synthetic polymers are commonly used as protein repelling materials for a variety of biomedical applications. Despite their widespread use, the fundamental mechanism underlying protein repellence is often elusive. Such insights are essential for improving existing and developing new materials. Here, we investigate how subtle differences in the chemistry of hydrophilic polyphosphoesters influence the adsorption of the human blood proteins serum albumin and fibrinogen. Using thermodynamic measurements, surface-specific vibrational spectroscopy, and Brewster angle microscopy, we investigate protein adsorption, hydration, and steric repulsion properties of the polyphosphoester polymers. Whereas both surface hydration and polymer conformation of the polymers vary substantially as a consequence of the chemical differences in the polymer structure, the protein repellency ability of these hydrophilic materials appears to be dominated by steric repulsion.
Collapse
Affiliation(s)
- Christoph Bernhard
- Max Planck Institute for Polymer Research, Ackermannweg 10 , 55128 Mainz , Germany
| | - Kristin N Bauer
- Max Planck Institute for Polymer Research, Ackermannweg 10 , 55128 Mainz , Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10 , 55128 Mainz , Germany
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research, Ackermannweg 10 , 55128 Mainz , Germany
| | - Grazia Gonella
- Max Planck Institute for Polymer Research, Ackermannweg 10 , 55128 Mainz , Germany
| |
Collapse
|
21
|
Becker G, Wurm FR. Functional biodegradable polymers via ring-opening polymerization of monomers without protective groups. Chem Soc Rev 2018; 47:7739-7782. [PMID: 30221267 DOI: 10.1039/c8cs00531a] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biodegradable polymers are of current interest and chemical functionality in such materials is often demanded in advanced biomedical applications. Functional groups often are not tolerated in the polymerization process of ring-opening polymerization (ROP) and therefore protective groups need to be applied. Advantageously, several orthogonally reactive functions are available, which do not demand protection during ROP. We give an insight into available, orthogonally reactive cyclic monomers and the corresponding functional synthetic and biodegradable polymers, obtained from ROP. Functionalities in the monomer are reviewed, which are tolerated by ROP without further protection and allow further post-modification of the corresponding chemically functional polymers after polymerization. Synthetic concepts to these monomers are summarized in detail, preferably using precursor molecules. Post-modification strategies for the reported functionalities are presented and selected applications highlighted.
Collapse
Affiliation(s)
- Greta Becker
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
22
|
Wang H, Dong M, Khan S, Su L, Li R, Song Y, Lin YN, Kang N, Komatsu CH, Elsabahy M, Wooley KL. Acid-Triggered Polymer Backbone Degradation and Disassembly to Achieve Release of Camptothecin from Functional Polyphosphoramidate Nanoparticles. ACS Macro Lett 2018; 7:783-788. [PMID: 35650768 DOI: 10.1021/acsmacrolett.8b00377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Camptothecin (CPT) is a promising anticancer drug, yet its therapeutic potential has been limited by poor water solubility and facile hydrolysis of the lactone form into an inactive carboxylate form at neutral pH. In this work, a fundamental synthetic methodology was advanced to allow for the preparation of well-defined functional polyphosphoramidate (PPA)-based block copolymers that coassembled with CPT into nanoparticles, which underwent coincident acid-triggered polymer backbone degradation, nanoparticle disassembly, and CPT release. Encapsulation of CPT by the PPA polymer inhibited premature hydrolysis of CPT at pH 7.4 and enabled accelerated CPT release at pH 5.0 (ca. 4× faster than at pH 7.4). Two degradable oxazaphospholidine monomers, with one carrying an alkyne group, were synthesized to access well-defined block PPAs (dispersity, Đ<1.2) via sequential organobase-catalyzed ring-opening polymerizations (ROP). The resulting amphiphilic block copolymers (PEOMP-b-PBYOMP) were physically loaded with CPT to achieve well-dispersed nanotherapeutics, which allowed the aqueous suspension of CPT at concentrations up to 3.2 mg/mL, significantly exceeding the aqueous solubility of the drug (<2.0 μg/mL at 37 °C). Cytotoxicity studies revealed enhanced efficacy of the CPT-loaded nanoparticles over free CPT in cancer cells and similar toxicity in normal cells.
Collapse
Affiliation(s)
- Hai Wang
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Laboratory for Synthetic−Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Mei Dong
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Laboratory for Synthetic−Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Sarosh Khan
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Laboratory for Synthetic−Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Lu Su
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Laboratory for Synthetic−Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Richen Li
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Laboratory for Synthetic−Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Yue Song
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Laboratory for Synthetic−Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Yen-Nan Lin
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Laboratory for Synthetic−Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Nari Kang
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Laboratory for Synthetic−Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Christopher H. Komatsu
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Laboratory for Synthetic−Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Mahmoud Elsabahy
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Laboratory for Synthetic−Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Karen L. Wooley
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Laboratory for Synthetic−Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|