1
|
Hu J, Hao X, Ning N, Yu B, Tian M. Reactive Janus Particle Compatibilizer with Adjustable Structure and Optimal Interface Location for Compatibilization of Highly Immiscible Polymer Blends. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23963-23970. [PMID: 37158003 DOI: 10.1021/acsami.3c03133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Highly immiscible blend materials with distinctive and excellent properties play a key role in meeting the application needs, especially in extreme environments, and reactive nanoparticles are used to increase the interface adhesion and optimize the morphology of highly immiscible blending. However, these reactive nanoparticles tend to aggregate and even agglomerate during reactive blending, which significantly deteriorates their compatibilization efficiency. Herein, reactive Janus particles with the epoxy group and various siloxane molecular long chain grafting ratios (E-JP-PDMS) were synthesized using SiO2@PDVB Janus particles (JP) and used as compatibilizers for polyamide and methyl vinyl silicone elastomer (PA/MVQ) blends, which were highly immiscible. The effects of the structure of E-JP-PDMS Janus nanoparticles on their location at the interfaces between the PA and MVQ as well as their compatibilization efficiency for the PA/MVQ blends were investigated. The location and dispersion of E-JP-PDMS at the interfaces were improved by increasing the PDMS content in E-JP-PDMS. The average diameter of the MVQ domains of the PA/MVQ (70/30, w/w) was 79.5 μm and was reduced to 5.3 μm in the presence of 3.0 wt % of the E-JP-PDMS with 65 wt % PDMS. As a comparison, it was 45.1 μm in the presence of 3.0 wt % of a commercial compatibilizer (ethylene-butylacylate-maleic anhydride copolymer, denoted as EBAMAH), which provides a guideline for the design and preparation of efficient compatibilizers for highly immiscible polymer blends.
Collapse
Affiliation(s)
- Jing Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Shenyang Medical College, Shenyang 110034, China
| | - Xinyue Hao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nanying Ning
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
He HL, Liang FX. Interfacial Engineering of Polymer Blend with Janus Particle as Compatibilizer. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
3
|
Asymmetrically functionalized CNTs: preparation of polymer nanocomposites and investigation of interfacial properties. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Suzuki R, Yamauchi Y, Sugahara Y. Inorganic material-based Janus nanosheets: asymmetrically functionalized 2D-inorganic nanomaterials. Dalton Trans 2022; 51:13145-13156. [PMID: 35997213 DOI: 10.1039/d2dt01557a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During the past decade, various inorganic material-based Janus nanosheets have been prepared and their applications have been proposed. Inorganic material-based Janus nanosheets have various advantages over polymer-based Janus nanosheets, including the maintenance of their characteristic two-dimensional shape, and are expected to be applied as unique functional materials. Methods for regioselective functionalization of the two sides of the individual nanosheets are extremely important for the development of inorganic material-based Janus nanosheets. In this review, the preparation methods and applications of inorganic material-based Janus nanosheets are summarized from the point of view of inorganic nanosheet functionalization.
Collapse
Affiliation(s)
- Ryoko Suzuki
- Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26, Nishi-waseda, Shinjuku-ku, Tokyo 169-0051, Japan. .,Nikon Corporation, 1-10-1, Asamizodai, Minami-ku, Sagamihara, Kanagawa 252-0328, Japan
| | - Yusuke Yamauchi
- Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26, Nishi-waseda, Shinjuku-ku, Tokyo 169-0051, Japan. .,School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yoshiyuki Sugahara
- Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26, Nishi-waseda, Shinjuku-ku, Tokyo 169-0051, Japan. .,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
5
|
Guan J, Yang Y, Tang B, Shen X, Li Y. The synthesis of functional Janus nanosheets as compatibilizers for the immiscible polyamide 6 /polystyrene (PA6/PS): Formation of the nanosilica monolayer at the interface. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Zhang M, Jiang C, Wu Q, Zhang G, Liang F, Yang Z. Poly(lactic acid)/Poly(butylene succinate) (PLA/PBS) Layered Composite Gas Barrier Membranes by Anisotropic Janus Nanosheets Compartibilizers. ACS Macro Lett 2022; 11:657-662. [PMID: 35570811 DOI: 10.1021/acsmacrolett.2c00139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Poly(lactic acid) (PLA), one of the most promising biodegradable polymer products, has achieved wide applications for its relatively good mechanical properties and moderate degradability. Here we report an environment-friendly filler, the organic-inorganic composite Janus nanosheets (PLA/PBS JNs), which can jam at the interface of the PLA/PBS blend with a low threshold as the compatibilizer and can simultaneously toughen the composites and improve the gas barrier performance due to better interfacial interaction and tortuous path effect. With 0.3 wt % of PLA/PBS JNs added, the tensile strength and elongation at break of the PLA/PBS blend can be improved by 37% and 224%, respectively. After a further hot-pressing process, the barrier performance of the PLA/PBS composite membranes can be significantly enhanced since PLA, PLA/PBS JNs, and PBS are arranged in a nearly lamellar structure with oxygen permeability of 0.63 × 10-15 cm3 cm·cm-2 s-1 Pa-1 with only 0.5 wt % of PLA/PBS JNs.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Chao Jiang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qiuhua Wu
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Guolin Zhang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Fuxin Liang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Hu L, Han Y, Rong C, Wang X, Wang H, Li Y. Interfacial Engineering with Rigid Nanoplatelets in Immiscible Polymer Blends: Interface Strengthening and Interfacial Curvature Controlling. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11016-11027. [PMID: 35171566 DOI: 10.1021/acsami.1c24817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The interfacial nanoparticle compatibilization (INC) strategy has opened up a promising avenue toward simultaneous functionalization and interfacial engineering of immiscible polymer blends. While the INC mechanism has been well developed recently, few investigations have focused on rigid nanoplatelets because of the inherent steric hindrance of the surface-grafted polymer chains. Herein, surface-modified rigid nanoplatelets have been incorporated into an immiscible poly(l-lactide) (PLLA)/poly(butylene succinate) (PBSU) blend. It is demonstrated that the strong interfacial adhesion between PLLA and PBSU phases is promoted via molecular entanglements of the grafted chains on the surface of nanoplatelets with the individual components. A refined phase morphology with improved mechanical properties can be achieved with the addition of 5 wt % modified Gibbsite nanoplatelets. It was further found that the stiffness of nanoplatelets can change the geometry of the interface significantly. It is, therefore, indicated that the simultaneous interface strengthening and interfacial curvature controlling of rigid nanoplatelets originate from the selective swelling/collapse of the in situ-formed PLLA and PBSU grafts within the corresponding phase at the interface. Such a mechanism is confirmed by the Monte Carlo simulations. This work provides new opportunities for the fabrication of advanced polymer blend nanocomposites.
Collapse
Affiliation(s)
- Lingmin Hu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yuanyuan Han
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, People's Republic of China
| | - Chenyan Rong
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Xiaokan Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Hengti Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| |
Collapse
|
8
|
Ye Z, Yu H, Zheng Z, Hu B, Zhao Y, Wang H. Janus Nanoshards Prepared Based on High Internal Phase Emulsion Templates for Compatibilizing Immiscible Polymer Blends. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhangfan Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Heng Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zheng Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Bintao Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yongliang Zhao
- Shanghai Dilato Materials Company Limited, Shanghai 200433, China
| | - Haitao Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
9
|
Chen Y, Liang Y, Wang L, Guan M, Zhu Y, Yue X, Huang X, Lu G. Preparation and applications of freestanding Janus nanosheets. NANOSCALE 2021; 13:15151-15176. [PMID: 34486634 DOI: 10.1039/d1nr04284j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the family of Janus nanomaterials, Janus nanosheets possess not only the advantages of Janus nanomaterials, but also the advantages of two-dimensional nanosheets, endowing them with many extraordinary properties. Therefore, Janus nanosheets have great potential in the fields of interfacial engineering, catalysis, and molecular recognition. This review summarizes and discusses the recent advances in both the preparation and applications of freestanding Janus nanosheets. After a short introduction to different types of Janus nanosheets, a variety of methods for preparing freestanding Janus nanosheets are introduced, including the surface reaction, interface reaction, emulsion reaction, self-assembly, and stripping of non-Janus nanosheets, as well as selective grafting of existing Janus nanosheets. Then, the wide applications of Janus nanosheets in the fields of emulsification, catalysis, polymer reinforcement, nanomotors, and molecular recognition are summarized in detail. Finally, a discussion on the remaining challenges and future perspectives in this field is included. This review will not only deepen the understanding of Janus nanosheets, but also benefit the designs and fabrications of extraordinary and multi-functional Janus nanosheets.
Collapse
Affiliation(s)
- Yaqi Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Yan Liang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Li Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Mengdan Guan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Yameng Zhu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiaoping Yue
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Gang Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
10
|
Hata Y, Yoneda S, Tanaka S, Sawada T, Serizawa T. Structured liquids with interfacial robust assemblies of a nonionic crystalline surfactant. J Colloid Interface Sci 2021; 590:487-494. [DOI: 10.1016/j.jcis.2021.01.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 11/26/2022]
|
11
|
Xu Z, Liu J, Chen J, Lin J, Chen Q. Design of Janus particles based on silica@polystyrene and their compatibilization on poly(
p
‐dioxanone)/poly(lactic acid) composites. J Appl Polym Sci 2021. [DOI: 10.1002/app.50269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhiyan Xu
- College of Chemistry and Materials Science Fujian Normal University Fuzhou China
| | - Jinling Liu
- Quangang Petrochemical Research Institute Fujian Normal University Fuzhou China
| | - Jiawen Chen
- College of Chemistry and Materials Science Fujian Normal University Fuzhou China
| | - Jianrong Lin
- College of Chemistry and Materials Science Fujian Normal University Fuzhou China
| | - Qinhui Chen
- College of Chemistry and Materials Science Fujian Normal University Fuzhou China
- Fujian Provincial Key Laboratory of Polymer Materials Fujian Normal University Fuzhou China
| |
Collapse
|
12
|
Ionic liquid-functionalized amphiphilic Janus nanosheets afford highly accessible interface for asymmetric catalysis in water. J Catal 2021. [DOI: 10.1016/j.jcat.2021.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Gheisari F, Shafiee M, Abbasi M, Jangjou A, Izadpanah P, Vaez A, Amani AM. Janus nanoparticles: an efficient intelligent modern nanostructure for eradicating cancer. Drug Metab Rev 2021; 53:592-603. [PMID: 33561356 DOI: 10.1080/03602532.2021.1878530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the modern age, the struggle to generate appropriate bio-based materials and nano-scaled colloidal particulates for developed application domains, has already resulted in remarkable attempts in the advancement of regulated size and shape, anisotropy, and characteristics of nanostructures. The bottom-up development strategies of components are among the most important science areas throughout nanotechnology, in which the designed building blocks are often utilized to generate novel structures by random self-assembly. In biomedical applications, Janus nanoparticles (JNPs) are necessary. This is due to their effective stimulus-responsive properties, tunable structure, biocompatibility, containing two surfaces with various hydrophobic characteristics and distinct functional groups. Featuring two parts with differing hydrophobicity has been the most critical aspect of the Janus amphiphilic particles. Development of JNPs has been afforded, using imaging agents (e.g. gold (AU) for photoacoustic imaging processing (PAI), silver for surface-enhanced Raman scattering (SERS), and Fe3O4 and MnO2 to magnetic resonance imaging (MRI)). It is also to be mentioned that a number of other properties become salient - properties such as integration imaging factors into JNPs (like quantum dots, fluorescent dyes), multiple imaging methods for screening and diagnosis application can indeed be accomplished. Janus nanostructures have been promising platforms for bioengineering as therapeutic carriers, drug delivery vehicles, and biosensor equipment; they may also be employed for the transport of bioactive hydrophilic and hydrophobic materials. The main production approaches and major advancement of JNPs in the biomedical sector and cancer therapy will be described in this paper.
Collapse
Affiliation(s)
- Farshid Gheisari
- Department of Nuclear Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Shafiee
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Peyman Izadpanah
- Department of Cardiology, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
|
15
|
Hu J, Song Y, Ning N, Zhang L, Yu B, Tian M. An effective strategy for improving the interface adhesion of the immiscible methyl vinyl silicone elastomer/thermoplastic polyurethane blends via developing a hybrid janus particle with amphiphilic brush. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Duan Y, Zhao X, Sun M, Hao H. Research Advances in the Synthesis, Application, Assembly, and Calculation of Janus Materials. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04304] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Xia Zhao
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| | - Miaomiao Sun
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| |
Collapse
|
17
|
Guan J, Gui H, Zheng Y, You J, Li Y, Liang F, Yang Z. Stabilizing Polymeric Interface by Janus Nanosheet. Macromol Rapid Commun 2020; 41:e2000392. [PMID: 32833324 DOI: 10.1002/marc.202000392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/11/2020] [Indexed: 12/19/2022]
Abstract
A strategy is proposed to stabilize the polymeric interface by using the irregular Janus nanosheet (JNS). The poly(vinylidene fluoride) (PVDF)/poly(l-lactic acid) (PLLA) at 60/40 (wt/wt) with a bi-continuous structure is selected as the model melt blend, and the PMMA/epoxy JNS is synthesized and used as the compatibilizer. The JNS is preferentially located at the interface. The interfacial coverage by the JNS reaches a saturated state forming the interconnected jamming structure at 0.5 wt% of the JNS. The interface is thus stabilized which is well preserved after annealing at high temperature. After selectively etching PLLA, the robust PVDF porous material is derived with the JNS armored at the pore skeleton surface. The porous material provides a universal scaffold to achieve stable functional materials after filling the pores.
Collapse
Affiliation(s)
- Jipeng Guan
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haoguan Gui
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanyan Zheng
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jichun You
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China
| | - Fuxin Liang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
18
|
Li Q, Wang L, Lin J, Xu Z. Distinctive Morphology Modifiers for Polymer Blends: Roles of Asymmetric Janus Nanoparticles during Phase Separation. J Phys Chem B 2020; 124:4619-4630. [PMID: 32379453 DOI: 10.1021/acs.jpcb.0c02165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Janus nanoparticles (JPs), which are anisotropic nanoparticles with multiple constituting parts, have been recognized as superior compatibilizers for polymer-blend-based nanocomposites. However, so far, most studies focused on the effects of symmetric JPs on the phase separation dynamics of polymer blends, while the roles of asymmetric JPs during phase separation remain unclear. In this work, the phase separation dynamics of symmetric blends compatibilized by JPs with various compositions was studied by using dissipative particle dynamics (DPD) simulations. It was found that the blends compatibilized by asymmetric JPs tend to undergo morphological transitions from bicontinuous networks to droplets-in-matrix structures at the late stage of phase separation, which is due to the influence of asymmetric JPs on the energetically favored curvature of the interfaces between polymer domains. Such a mechanism is absent for symmetric JPs and other compatibilizers (e.g., triblock copolymers and homogeneous particles) because they lack the unique combination of chemical asymmetry with the particulate nature like the asymmetric JPs. Moreover, it was observed that the asymmetric JPs can stably localize at the interfaces and act as efficient compatibilizers only when the fraction of the minor constituent part exceeds a critical value. These findings not only shed light upon the roles of asymmetric JPs as compatibilizers but also indicate a promising strategy for designing polymer-blend-based nanocomposites with tailor-made structures.
Collapse
Affiliation(s)
- Qing Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhanwen Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
19
|
Cheng W, Xu Z, Chen S, Ai J, Lin J, Lin J, Chen Q. Compatibilization Behavior of Double Spherical TETA-SiO 2@PDVB Janus Particles Anchored at the Phase Interface of Acrylic Resin/Epoxy Resin (AR/EP) Polymer Blends. ACS OMEGA 2019; 4:17607-17614. [PMID: 31681867 PMCID: PMC6822127 DOI: 10.1021/acsomega.9b00793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/03/2019] [Indexed: 06/10/2023]
Abstract
The inorganic particles used as a compatibilizer play a role in crack termination and heat resistance. However, the poor compatibility of inorganic particles and polymer hinders their application. Herein, the double spherical SiO2@PDVB Janus particles (JPs) were modified with triethylenetetramine (TETA), and the obtained anisotropic TETA-SiO2@PDVB JPs were used as the compatibilizer of acrylic resin/epoxy resin (AR/EP) composites. The modification and the compatibilization of TETA-SiO2@PDVB JPs were studied by scanning electron microscopy, X-ray photoelectron spectroscopy, differential scanning calorimetry, and dynamic mechanical analyzer, impact test, tensile test, and so forth. Results show that amino groups grafted onto the SiO2 lobe can react with epoxy groups of EP, which results in the TETA-SiO2 lobe being embedded in the EP phase and the PDVB lobe being pushed toward the AR phase. The TETA-SiO2@PDVB JPs anchored at the interface of AR and EP increase their interfacial adhesion, decrease the domain phase size and distribution of dispersed AR, and improve the compatibility of AR/EP composites. The compatibilization of nanoparticles (NPs) is realized by the cavitation and blunting of different scaled AR phase domain distributions and that of JPs is realized by the strong interfacial force originated by JPs. Moreover, the desorption energy of TETA-SiO2@PDVB JPs is higher than that of SiO2-TETA; so the glass transition temperature (T g) of AR/EP/JP composites is higher than that of AR/EP/NP composites. The strong interfacial adhesion and high desorption energy endow TETA-SiO2@PDVB JPs with a toughening effect and enhancing effect. The impact strength and the tensile strength of AR/EP/TETA-SiO2@PDVB composites are 16.03 kJ/m2 and 63.12 MPa, which are 9.91 kJ/m2 and 16.32 MPa higher than those of AR/EP composites, respectively. JPs used in the thermosetting EP is benefit to its toughening study and the new anisotropic Janus compatibilizer.
Collapse
Affiliation(s)
- Wei Cheng
- College
of Chemistry and Materials Science and Fujian Provincial Key Laboratory
of Polymer Materials, Fujian Normal University, Fuzhou 350007, People’s Republic of China
| | - Zhiyan Xu
- College
of Chemistry and Materials Science and Fujian Provincial Key Laboratory
of Polymer Materials, Fujian Normal University, Fuzhou 350007, People’s Republic of China
| | - Shuning Chen
- College
of Chemistry and Materials Science and Fujian Provincial Key Laboratory
of Polymer Materials, Fujian Normal University, Fuzhou 350007, People’s Republic of China
| | - Jie Ai
- College
of Chemistry and Materials Science and Fujian Provincial Key Laboratory
of Polymer Materials, Fujian Normal University, Fuzhou 350007, People’s Republic of China
| | - Jinhuo Lin
- College
of Chemistry and Materials Science and Fujian Provincial Key Laboratory
of Polymer Materials, Fujian Normal University, Fuzhou 350007, People’s Republic of China
| | - Jianrong Lin
- College
of Chemistry and Materials Science and Fujian Provincial Key Laboratory
of Polymer Materials, Fujian Normal University, Fuzhou 350007, People’s Republic of China
| | - Qinhui Chen
- College
of Chemistry and Materials Science and Fujian Provincial Key Laboratory
of Polymer Materials, Fujian Normal University, Fuzhou 350007, People’s Republic of China
| |
Collapse
|
20
|
Paiva F, Boromand A, Maia J, Secchi A, Calado V, Khani S. Interfacial aggregation of Janus rods in binary polymer blends and their effect on phase separation. J Chem Phys 2019; 151:114907. [PMID: 31542012 DOI: 10.1063/1.5100134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Janus particles interfacially self-assemble into different structures when incorporated into multiphase systems. Dissipative particle dynamics simulations are employed herein to investigate the interplay between aggregation mechanisms and phase separation in polymer blends. Shorter rods with a standing configuration become increasingly "caged" or trapped in larger aggregates as weight fraction increases, which is reflected in the way that their diffusion is coupled to their aggregation rates. Janus rods of higher aspect ratios that are tilted at the interface aggregate side-by-side and are able to hinder phase separation kinetics. This is due to a combination of individual Janus rod conformations at the interface, their intrinsic aggregation mechanisms, aggregate fractal dimension, and aggregation rates, and can also be traced back to the scaling of the diffusion coefficient of aggregates with their size. Findings presented provide insight into the mechanisms governing two dimensionally growing colloidal aggregates at fluid interfaces, more specifically, those associated with Janus particles, and shed light on the potential of these systems in paving the way for designing new functional materials.
Collapse
Affiliation(s)
- F Paiva
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106, USA
| | - A Boromand
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106, USA
| | - J Maia
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106, USA
| | - A Secchi
- Chemical Engineering Graduate Program (COPPE), Universidade Federal do Rio de Janeiro, Rua Horácio Macedo 2030, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - V Calado
- School of Chemistry, Universidade Federal do Rio de Janeiro, Rua Horácio Macedo 2030, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - S Khani
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106, USA
| |
Collapse
|
21
|
Diaz J, Pinna M, Zvelindovsky A, Pagonabarraga I. Co-assembly of Janus nanoparticles in block copolymer systems. SOFT MATTER 2019; 15:6400-6410. [PMID: 31318004 DOI: 10.1039/c9sm01062a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Block copolymer are ideal matrices to control the localisation of colloids. Furthermore, anisotropic nanoparticles such as Janus nanoparticles possess an additional orientational degree of freedom that can play a crucial role in the formation of highly ordered materials made of block copolymers. This work presents a mesoscopic simulation method to assert the co-assembly of Janus nanoparticles in a block copolymer mixture, finding numerous instances of aggregation and formation of ordered configurations. Comparison with chemically homogeneous neutral nanoparticles shows that Janus nanoparticles are less prone to induce bridging along lamellar domains, thus being a less destructive way to segregate nanoparticles at interfaces. The combination of asymmetric block copolymer and asymmetric Janus nanoparticles can result in assembly of colloids with an even number of layers within the minority domain.
Collapse
Affiliation(s)
- Javier Diaz
- Centre for Computational Physics, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.
| | - Marco Pinna
- Centre for Computational Physics, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.
| | - Andrei Zvelindovsky
- Centre for Computational Physics, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.
| | - Ignacio Pagonabarraga
- Departament de Fisica de la Materia Condensada, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona, Spain and CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lausanne, Batochime - Avenue Forel 2, 1015 Lausanne, Switzerland and Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
22
|
|
23
|
Yan X, Cayla A, Devaux E, Otazaghine B, Salaün F. Polypropylene/Poly(vinyl alcohol) Blends Compatibilized with Kaolinite Janus Hybrid Particles and Their Transformation into Fibers. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiang Yan
- GEMTEX − Laboratoire de Génie et Matériaux Textiles, ENSAIT, F-59000 Lille, France
| | - Aurélie Cayla
- GEMTEX − Laboratoire de Génie et Matériaux Textiles, ENSAIT, F-59000 Lille, France
| | - Eric Devaux
- GEMTEX − Laboratoire de Génie et Matériaux Textiles, ENSAIT, F-59000 Lille, France
| | - Belkacem Otazaghine
- Centre des Matériaux des mines d’Alès (C2MA), IMT, Mines Alès, 6, Avenue de Clavières, F-30319 Alès Cedex, France
| | - Fabien Salaün
- GEMTEX − Laboratoire de Génie et Matériaux Textiles, ENSAIT, F-59000 Lille, France
| |
Collapse
|
24
|
Hou Y, Zhang G, Tang X, Si Y, Song X, Liang F, Yang Z. Janus Nanosheets Synchronously Strengthen and Toughen Polymer Blends. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00598] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yu Hou
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guolin Zhang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Xiuping Tang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Yan Si
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ximing Song
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Fuxin Liang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenzhong Yang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Han X, Wu L, Zhang H, He A, Nie H. Inorganic-Organic Hybrid Janus Fillers for Improving the Thermal Conductivity of Polymer Composites. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12190-12194. [PMID: 30892016 DOI: 10.1021/acsami.8b22278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Janus fillers represent a combination of inorganic thermally conductive silver nanoparticles and organic polystyrene brushes on one entity but different sides. They are of practical importance for polymer composites with high thermal conductivity because of the improved dispersion and reduced interfacial heat resistance. Moreover, benefiting from the sheetlike structure and single-side deposition of inorganic particles, Janus fillers tend to align such that the heat pathway is constructed in the composite films, when fabricated by layer-by-layer doctor blading. As a result, the in-plane thermal conductivity of the polymer composite is as high as 4.57 W m-1 K-1, with only 10 vol % Janus filler loading.
Collapse
Affiliation(s)
- Xiao Han
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering , Qingdao University of Science and Technology , Qingdao , Shandong 266042 , China
| | - Leijie Wu
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering , Qingdao University of Science and Technology , Qingdao , Shandong 266042 , China
| | - Hongbo Zhang
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering , Qingdao University of Science and Technology , Qingdao , Shandong 266042 , China
| | - Aihua He
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering , Qingdao University of Science and Technology , Qingdao , Shandong 266042 , China
| | - Huarong Nie
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering , Qingdao University of Science and Technology , Qingdao , Shandong 266042 , China
| |
Collapse
|
26
|
Kirillova A, Marschelke C, Synytska A. Hybrid Janus Particles: Challenges and Opportunities for the Design of Active Functional Interfaces and Surfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9643-9671. [PMID: 30715834 DOI: 10.1021/acsami.8b17709] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Janus particles are a unique class of multifunctional patchy particles combining two dissimilar chemical or physical functionalities at their opposite sides. The asymmetry characteristic for Janus particles allows them to self-assemble into sophisticated structures and materials not attainable by their homogeneous counterparts. Significant breakthroughs have recently been made in the synthesis of Janus particles and the understanding of their assembly. Nevertheless, the advancement of their applications is still a challenging field. In this Review, we highlight recent developments in the use of Janus particles as building blocks for functional materials. We provide a brief introduction into the synthetic strategies for the fabrication of JPs and their properties and assembly, outlining the existing challenges. The focus of this Review is placed on the applications of Janus particles for active interfaces and surfaces. Active functional interfaces are created owing to the stabilization efficiency of Janus particles combined with their capability for interface structuring and functionalizing. Moreover, Janus particles can be employed as building blocks to fabricate active functional surfaces with controlled chemical and topographical heterogeneity. Ultimately, we will provide implications for the rational design of multifunctional materials based on Janus particles.
Collapse
Affiliation(s)
- Alina Kirillova
- Department of Mechanical Engineering and Materials Science, Edmund T. Pratt Jr. School of Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Claudia Marschelke
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6 , 01069 Dresden , Germany
- Fakultät Mathematik und Naturwissenschaften , Technische Universität Dresden , 01062 Dresden , Germany
| | - Alla Synytska
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6 , 01069 Dresden , Germany
- Fakultät Mathematik und Naturwissenschaften , Technische Universität Dresden , 01062 Dresden , Germany
| |
Collapse
|
27
|
Li Q, Wang L, Lin J, Zhang L. Distinctive phase separation dynamics of polymer blends: roles of Janus nanoparticles. Phys Chem Chem Phys 2019; 21:2651-2658. [DOI: 10.1039/c8cp06431h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The present work demonstrates that Janus nanoparticles uniquely promote the phase separation of polymer blends at the early stage of spinodal decomposition, but impede it at the late stage.
Collapse
Affiliation(s)
- Qing Li
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| |
Collapse
|
28
|
Han X, Liang X, Cai L, He A, Nie H. Amphiphilic Janus nanosheets by grafting reactive rubber brushes for reinforced rubber materials. Polym Chem 2019. [DOI: 10.1039/c9py00863b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An amphiphilic Janus nanosheet with different reactive rubber brushes on two opposite sides can simultaneously strengthen and toughen rubber blends.
Collapse
Affiliation(s)
- Xiao Han
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Xincheng Liang
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Lei Cai
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Aihua He
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Huarong Nie
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|
29
|
Zhang X, Ren H, He A. Facile scalable fabrication of ultra-thin freestanding SiO 2-based hybrid nanosheets with multifunctional properties. NANOSCALE 2018; 10:19351-19359. [PMID: 30307011 DOI: 10.1039/c8nr06591h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two-dimensional (2D) nanomaterials with unique features like a large surface-to-volume ratio and the quantum confinement effect have attracted great attention for applications in energy storage, catalysis, sensing, membranes, etc. Silica (SiO2)-based nanosheets, as members of the 2D material family, are extremely intriguing because of their unique electronic insulation, bio-compatibility and profound chemical and thermal stability. However, there is still a lack of available approaches for fabricating SiO2 nanosheets in a simple, large-scale and cost-effective fashion. In the present research, we have proposed a facile and mass fabrication method for ultra-thin freestanding SiO2-based hybrid nanosheets (SS) with a uniform thickness by crashing hollow microcapsules through ultrasonication treatment. The morphology, composition, and application of the hybrid nanosheets are investigated in detail. The experimental results demonstrate that SS nanosheets with an inorganic-organic hybrid structure display a Janus-type composition with double bonds residing on one side and hydroxyl groups on the other. Additionally, the SS nanosheets could be easily modified by introducing various functional components such as aluminium hydroxide (AH). The as-prepared SS nanosheets and AH modified nanosheets (SS-AH) could considerably enhance the thermal stability of silicone rubber with remarkably increased thermal decomposition temperatures and residues compared with the reference samples. SS and SS-AH sheets are highly superior in usage as polymer thermal stability fillers because of the following aspects: the hybrid nature of SS and SS-AH is advantageous to facilitate the filler-polymer interaction, so these particles could be readily dispersed into silicone without any hydrophobicity modification; these fillers could improve the thermal stability of elastomers at a much lower filler loading (<8%) than the previously reported filler system (e.g. >20 wt%). Furthermore, the nanosheets are also proved to be efficient in usage as emulsifiers for the immiscible oil-water system with a higher efficiency and emulsion stability than the commonly used emulsifiers. Consequently, the hybrid nanosheets fabricated in this work will not only enrich the family of ultra-thin 2D materials but also attract more interest in potential applications in functional nanocomposites and solid emulsifiers.
Collapse
Affiliation(s)
- Xinping Zhang
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | | | | |
Collapse
|