1
|
Brodszkij E, Ryberg C, Lyons JA, Juhl DW, Nielsen NC, Sigalas NI, Lyulin AV, Pedersen JS, Städler B. Poly(Sitosterol)-Based Hydrophobic Blocks in Amphiphilic Block Copolymers for the Assembly of Hybrid Vesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401934. [PMID: 38860565 DOI: 10.1002/smll.202401934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/19/2024] [Indexed: 06/12/2024]
Abstract
Amphiphilic block copolymer and lipids can be assembled into hybrid vesicles (HVs), which are an alternative to liposomes and polymersomes. Block copolymers that have either poly(sitostryl methacrylate) or statistical copolymers of sitosteryl methacrylate and butyl methacrylate as the hydrophobic part and a poly(carboxyethyl acrylate) hydrophilic segment are synthesized and characterized. These block copolymers assemble into small HVs with soybean L-α-phosphatidylcholine (soyPC), confirmed by electron microscopy and small-angle X-ray scattering. The membrane's hybrid nature is illustrated by fluorescence resonance energy transfer between labeled building blocks. The membrane packing, derived from spectra when using Laurdan as an environmentally sensitive fluorescent probe, is comparable between small HVs and the corresponding liposomes with molecular sitosterol, although the former show indications of transmembrane asymmetry. Giant HVs with homogenous distribution of the block copolymers and soyPC in their membranes are assembled using the electroformation method. The lateral diffusion of both building blocks is slowed down in giant HVs with higher block copolymer content, but their permeability toward (6)-carboxy-X-rhodamine is higher compared to giant vesicles made of soyPC and molecular sitosterol. This fundamental effort contributes to the rapidly expanding understanding of the integration of natural membrane constituents with designed synthetic compounds to form hybrid membranes.
Collapse
Affiliation(s)
- Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Cecilie Ryberg
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Joseph A Lyons
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus, 8000, Denmark
| | - Dennis Wilkens Juhl
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Niels Chr Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, 8000, Denmark
| | - Nikolaos I Sigalas
- Soft Matter and Biological Physics Group, Department of Applied Physics, Technische Universiteit Eindhoven, Eindhoven, 5600 MB, The Netherlands
| | - Alexey V Lyulin
- Soft Matter and Biological Physics Group, Department of Applied Physics, Technische Universiteit Eindhoven, Eindhoven, 5600 MB, The Netherlands
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, 8000, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|
2
|
Yang C, Li Z, Xu J. Single crystals and two‐dimensional crystalline assemblies of block copolymers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Zi‐Xian Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Jun‐Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
3
|
Ando N, Uenuma S, Yokoyama H, Ito K. Thermally induced disassembly mechanism of pseudo-polyrotaxane nanosheets consisting of β-CD and a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymer. Polym Chem 2022. [DOI: 10.1039/d1py01386f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PPRNSs dissolved in two steps during heating owing to the anisotropy of the topological constraint of β-CD by axis polymers.
Collapse
Affiliation(s)
- Naoki Ando
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Chiba 277-8561, Japan
| | - Shuntaro Uenuma
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Chiba 277-8561, Japan
| | - Hideaki Yokoyama
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Chiba 277-8561, Japan
| | - Kohzo Ito
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Chiba 277-8561, Japan
| |
Collapse
|
4
|
Finnegan JR, Pilkington EH, Alt K, Rahim MA, Kent SJ, Davis TP, Kempe K. Stealth nanorods via the aqueous living crystallisation-driven self-assembly of poly(2-oxazoline)s. Chem Sci 2021; 12:7350-7360. [PMID: 34163824 PMCID: PMC8171341 DOI: 10.1039/d1sc00938a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/10/2021] [Indexed: 11/21/2022] Open
Abstract
The morphology of nanomaterials critically influences their biological interactions. However, there is currently a lack of robust methods for preparing non-spherical particles from biocompatible materials. Here, we combine 'living' crystallisation-driven self-assembly (CDSA), a seeded growth method that enables the preparation of rod-like polymer nanoparticles, with poly(2-oxazoline)s (POx), a polymer class that exhibits 'stealth' behaviour and excellent biocompatibility. For the first time, the 'living' CDSA process was carried out in pure water, resulting in POx nanorods with lengths ranging from ∼60 to 635 nm. In vitro and in vivo study revealed low immune cell association and encouraging blood circulation times, but little difference in the behaviour of POx nanorods of different length. The stealth behaviour observed highlights the promising potential of POx nanorods as a next generation stealth drug delivery platform.
Collapse
Affiliation(s)
- John R Finnegan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Victoria 3052 Australia
| | - Emily H Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Victoria 3052 Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne Parkville Victoria 3010 Australia
| | - Karen Alt
- NanoTheranostics Laboratory, Australian Centre for Blood Diseases, Monash University Melbourne Victoria 3004 Australia
| | - Md Arifur Rahim
- School of Chemical Engineering, University of New South Wales (UNSW) Sydney NSW 2052 Australia
| | - Stephen J Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne Parkville Victoria 3010 Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Victoria 3052 Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland Brisbane QLD 4072 Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Victoria 3052 Australia
- Materials Science and Engineering, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
5
|
Uenuma S, Maeda R, Yokoyama H, Ito K. Molecular Recognition of Fluorescent Probe Molecules with a Pseudopolyrotaxane Nanosheet. ACS Macro Lett 2021; 10:237-242. [PMID: 35570789 DOI: 10.1021/acsmacrolett.0c00660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pseudopolyrotaxane nanosheets (PPRNS) are ultrathin two-dimensional (2D) materials fabricated via supramolecular self-assembly of β-cyclodextrin (β-CD) and poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers. In this study, the molecular loading of various fluorescent probe molecules onto PPRNS was systematically investigated. 1H NMR study for R6G absorption to PPRNS indicated that the small hydrophobic groups, such as the methyl group, of R6G were absorbed by PPRNS. Consistently, the fluorescent probes without methyl groups were not absorbed. These results indicate that PPRNS has a molecular recognition absorption property based on the host-guest interaction of the functional groups on probe molecules and molecular-sized spaces of PPRNS surfaces, which may be vacant β-CDs and voids between β-CD columns. The absorbed amount of the molecular probes onto PPRNS was investigated by UV-vis spectra, and the absorption behavior could be described well by the Langmuir absorption isotherm. This is consistent with the suggested model that the probes are absorbed onto the PPRNS surfaces. This study demonstrates that PPRNSs can be applied as adsorbents for toxic compounds, drug delivery systems, and 2D sensors.
Collapse
Affiliation(s)
- Shuntaro Uenuma
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Chiba 277-8561, Japan
| | - Rina Maeda
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Chiba 277-8561, Japan
| | - Hideaki Yokoyama
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Chiba 277-8561, Japan
| | - Kohzo Ito
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Chiba 277-8561, Japan
| |
Collapse
|
6
|
Guerin G, Molev G, Rupar PA, Manners I, Winnik MA. Understanding the Dissolution and Regrowth of Core-Crystalline Block Copolymer Micelles: A Scaling Approach. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gerald Guerin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Gregory Molev
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Paul A. Rupar
- Department of Chemistry, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
7
|
Wu Z, Zhao C, Huang Y, Ye F, Zhao G. Molecular mechanism underlying the effects of temperature and pH on the size and surface charge of octenylsuccinated oat β-glucan aggregates. Carbohydr Polym 2020; 237:116115. [PMID: 32241455 DOI: 10.1016/j.carbpol.2020.116115] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/06/2020] [Accepted: 03/02/2020] [Indexed: 02/02/2023]
Abstract
Environmental temperature and pH induced significant changes in the size and surface charge (ζ) of octenylsuccinated oat β-glucan aggregates. The underlying mechanisms were explored by using 1H-NMR, fluorescence spectra, thermodynamic analysis, and SAXS. At pH 6.5, the size decreased with temperature while ζ continuously increased. With increasing pH at 293 K, parabolic and U-shaped trends were observed in the size and ζ, peaking at pH 8.5 and 6.5, respectively. At any tested pH, the size decreased with temperature. Overall, ζ significantly increased with temperature at each pH. As temperature increased, the compactness of hydrophobic-domains increased while the compactness of hydrophilic-domains decreased. In an acidic environment, both the compactness increased with decreasing pH, but in an alkaline environment, they decreased with pH. The compactness changes were co-driven by enthalpy and entropy and corresponded to changes in the hydrophobic interactions in hydrophobic-domains, hydrogen bonds in hydrophilic-domains and electrostatic repulsions among octenylsuccinate molecules.
Collapse
Affiliation(s)
- Zhen Wu
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, PR China
| | - Chenyang Zhao
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Yongxia Huang
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering Research Center of Regional Foods, Chongqing, 400715, PR China.
| |
Collapse
|
8
|
Levi AE, Fu L, Lequieu J, Horne JD, Blankenship J, Mukherjee S, Zhang T, Fredrickson GH, Gutekunst WR, Bates CM. Efficient Synthesis of Asymmetric Miktoarm Star Polymers. Macromolecules 2020; 53:702-710. [PMID: 32489220 PMCID: PMC7266137 DOI: 10.1021/acs.macromol.9b02380] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Asymmetric miktoarm star polymers comprising an unequal number of chemically-distinct blocks connected at a common junction produce unique material properties, yet existing synthetic strategies are beleaguered by complicated reaction schemes that are restricted in both monomer scope and yield. Here, we introduce a new synthetic approach coined "μSTAR" - Miktoarm Synthesis by Termination After Ring-opening metathesis polymerization - that circumvents these traditional synthetic limitations by constructing the block-block junction in a scalable, one-pot process involving (1) grafting-through polymerization of a macromonomer followed by (2) in-situ enyne-mediated termination to install a single mikto-arm with exceptional efficiency. This modular μSTAR platform cleanly generates AB n and A(BA') n miktoarm star polymers with unprecedented versatility in the selection of A and B chemistries as demonstrated using many common polymer building blocks: poly(siloxane), poly(acrylate), poly(methacrylate), poly(ether), poly(ester), and poly(styrene). The average number of B or BA' arms (n) is easily controlled by the molar equivalents of macromonomer relative to Grubbs catalyst in the initial ring-opening metathesis polymerization step. While these materials are characterized by dispersity in n that arises from polymerization statistics, they self-assemble into mesophases that are identical to those predicted for precise miktoarm stars as evidenced by small-angle X-ray scattering experiments and self-consistent field theory simulations. In summary, the μSTAR technique provides a significant boost in design flexibility and synthetic simplicity while retaining the salient phase behavior of precise miktoarm star materials.
Collapse
Affiliation(s)
- Adam E. Levi
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Liangbing Fu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Joshua Lequieu
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Jacob D. Horne
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Jacob Blankenship
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Sanjoy Mukherjee
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Tianqi Zhang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Glenn H. Fredrickson
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Will R. Gutekunst
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Christopher M. Bates
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
9
|
Hiller W. Quantitative Studies of Block Copolymers and Their Containing Homopolymer Components by Diffusion Ordered Spectroscopy. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wolf Hiller
- Faculty of Chemistry and Chemical Biology Technical University Dortmund Otto‐Hahn‐Str. 4a D‐44227 Dortmund Germany
| |
Collapse
|
10
|
Guerin G, Molev G, Pichugin D, Rupar PA, Qi F, Cruz M, Manners I, Winnik MA. Effect of Concentration on the Dissolution of One-Dimensional Polymer Crystals: A TEM and NMR Study. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Gerald Guerin
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Gregory Molev
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Dmitry Pichugin
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Paul A. Rupar
- School of Chemistry, University of Bristol, Bristol, U.K. BS8 1TS
| | - Fei Qi
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Menandro Cruz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol, U.K. BS8 1TS
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
11
|
Zhang C, Sanchez RJP, Fu C, Clayden-Zabik R, Peng H, Kempe K, Whittaker AK. Importance of Thermally Induced Aggregation on 19F Magnetic Resonance Imaging of Perfluoropolyether-Based Comb-Shaped Poly(2-oxazoline)s. Biomacromolecules 2018; 20:365-374. [DOI: 10.1021/acs.biomac.8b01549] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|