1
|
Bertossi L, Oggioni M, Formon GJM, Weder C. Light-Triggered Switching of Metallosupramolecular Polymer Systems. ACS Macro Lett 2025:765-772. [PMID: 40393647 DOI: 10.1021/acsmacrolett.5c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Metallosupramolecular polymers (MSPs) are formed through the formation of coordination complexes between monomers that contain multiple ligands and suitable metal salts. The assembly of MSPs is generally dynamic and reversible, which leads to stimuli-responsive materials and enables functions such as healing or recycling. Heat is arguably the most widely employed stimulus to manipulate MSPs, but the level of control that can be achieved is limited. Here, we report light-responsive MSP systems, whose response is based on an opto-chemical transduction principle. We combined the photoacid generator 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine (MBTT) with poly(acrylates) that comprise a few mol % of the 2,6-bis(1'-methyl-benzimidazolyl)pyridine (Mebip) ligand. The latter forms supramolecular cross-links upon the addition of metal salts, such as Zn2+, Eu3+, and Cu2+. We utilized titration experiments, optical spectroscopy, and rheology on model compounds and polymer systems to demonstrate that the MSP network can be rapidly disassembled upon optical activation of the photoacid generator, on account of protonation of the ligand and dissociation of the ML complex. Optorheological experiments reveal that the rheological properties of gels based on the MSP network, MBTT, and chlorobenzene can be drastically altered in an on-demand fashion by exposure to UV light.
Collapse
Affiliation(s)
- Luca Bertossi
- Adolphe Merkle Institute, Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Marta Oggioni
- Adolphe Merkle Institute, Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Georges J M Formon
- Adolphe Merkle Institute, Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
2
|
Lindberg CA, Roberson AE, Ghimire E, Hertzog JE, Boynton NR, Liu G, Schneiderman DK, Patel SN, Rowan SJ. Should I stay or should I flow? An exploration of phase-separated metallosupramolecular liquid crystal polymers. Chemistry 2025; 31:e202404672. [PMID: 40200604 PMCID: PMC12057607 DOI: 10.1002/chem.202404672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/16/2025] [Accepted: 03/19/2025] [Indexed: 04/10/2025]
Abstract
Dynamic liquid crystalline polymers (dLCPs) incorporate both liquid crystalline mesogens and dynamic bonds into a single polymeric material. These dual functionalities impart order-dependent thermo-responsive mechano-optical properties and enhanced reprocessability/programmability enabling their use as soft actuators, adaptive adhesives, and damping materials. While many previous works studying dynamic LCPs utilize dynamic covalent bonds, metallosupramolecular bonds provide a modular platform where a series of materials can be accessed from a single polymeric feedstock through the variation of the metal ion used. A series of dLCPs were prepared by the addition of metal salts to a telechelic 2,6-bisbenzimidazolylpyridine (Bip) ligand endcapped LCP to form metallosupramolecular liquid crystal polymers (MSLCPs). The resulting MSLCPs were found to phase separate into hard and soft phases which aids in their mechanical robustness. Variations of the metal salts used to access these materials allowed for control of the thermomechanical, viscoelastic, and adhesive properties with relaxations that can be tailored independently of the mesogenic transition. This work demonstrates that by accessing phase separation through the incorporation of metallosupramolecular moieties, highly processable yet robust MSLCP materials can be realized. This class of materials opens the door to LCPs with bulk flow behavior that can also be utilized as multi-level adhesives.
Collapse
Affiliation(s)
- Charlie A. Lindberg
- Pritzker School of Molecular EngineeringThe University of ChicagoChicagoIllinoisUSA
| | | | - Elina Ghimire
- Pritzker School of Molecular EngineeringThe University of ChicagoChicagoIllinoisUSA
| | - Jerald E. Hertzog
- Pritzker School of Molecular EngineeringThe University of ChicagoChicagoIllinoisUSA
| | - Nicholas R. Boynton
- Pritzker School of Molecular EngineeringThe University of ChicagoChicagoIllinoisUSA
| | - Guancen Liu
- Department of ChemistryThe University of ChicagoChicagoIllinoisUSA
| | | | - Shrayesh N. Patel
- Pritzker School of Molecular EngineeringThe University of ChicagoChicagoIllinoisUSA
| | - Stuart J. Rowan
- Pritzker School of Molecular EngineeringThe University of ChicagoChicagoIllinoisUSA
- Department of ChemistryThe University of ChicagoChicagoIllinoisUSA
- Chemical Science and Engineering Division and Center for Molecular EngineeringArgonne National LaboratoryLemontIllinoisUSA
| |
Collapse
|
3
|
Onori I, Formon GJM, Weder C, Augusto Berrocal J. Toughening Healable Supramolecular Double Polymer Networks Based on Hydrogen Bonding and Metal Coordination. Chemistry 2024; 30:e202402511. [PMID: 39382353 DOI: 10.1002/chem.202402511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Double polymer networks (DNs) consist of two interpenetrating polymer networks and can offer properties that are not merely a sum of the parts. Here, we report an elastic DN made from two supramolecular polymers (SMPs) that consist of the same poly(n-butyl acrylate) (BA) backbone. The two polymers feature different non-covalent binding motifs, which form dynamic, reversible cross-links. The polymers were prepared by reversible addition-fragmentation chain-transfer polymerization of n-butyl acrylate and either the self-complementary hydrogen-bonding motif 2-ureido-4[1H]pyrimidinone, or the 2,6-bis(1'-methylbenzimidazolyl)pyridine ligand, which forms complexes with metal ions. The supramolecular DN made by these components combines features of the single networks, including high thermal stability and resistance to creep. The DN further exhibits excellent healability and displays a higher extensibility and a higher toughness than its constituents. The mechanical characteristics of the DN can be further enhanced by selectively pre-stretching one of the networks, which is readily possible due to the reversible formation of the supramolecular cross-links and their orthogonal stimuli-responsiveness.
Collapse
Affiliation(s)
- Ilaria Onori
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Georges J M Formon
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- NCCR Bio-Inspired Materials, University of Fribourg, 1700, Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- NCCR Bio-Inspired Materials, University of Fribourg, 1700, Fribourg, Switzerland
| | - José Augusto Berrocal
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, E- 43007, Tarragona, Spain
| |
Collapse
|
4
|
Marx F, Beccard M, Ianiro A, Dodero A, Neumann LN, Stoclet G, Weder C, Schrettl S. Structure and Properties of Metallosupramolecular Polymers with a Nitrogen-Based Bidentate Ligand. Macromolecules 2023; 56:7320-7331. [PMID: 37781212 PMCID: PMC10537925 DOI: 10.1021/acs.macromol.3c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/24/2023] [Indexed: 10/03/2023]
Abstract
The solid-state properties of supramolecular polymers that feature metal-ligand (ML) complexes are, in addition to the general nature of the monomer, significantly affected by the choice of ligand and metal salt. Indeed, the variation of these components can be used to alter the structural, thermal, mechanical, and viscoelastic properties over a wide ranges. Moreover, the dynamic nature of certain ML complexes can render the resulting metallosupramolecular polymers (MSPs) stimuli-responsive, enabling functions such as healing, reversible adhesion, and mechanotransduction. We here report MSPs based on the bidentate ligand 6-(1'-methylbenzimidazolyl) pyridine (MBP), which is easily accessible and forms threefold coordination complexes with various transition metal ions. Thus, a poly(ethylene-co-butylene) telechelic was end-functionalized with two MBP ligands and the resulting macromonomer was assembled with the triflate salts of either Zn2+, Fe2+, or Ni2+. All three MSPs microphase separate and adopt, depending on the metal ion and thermal history, lamellar or hexagonal morphologies with crystalline domains formed by the ML complexes. The melting transitions are well below 200 °C, and this permits facile (re)processing. Furthermore, defects can be readily and fully healed upon exposure to UV-light. While the three MSPs display similar moduli in the rubbery regime, their extensibility and tensile strength depend on the nature of the ML complex, which similarly affects the long-range order and dynamic behavior.
Collapse
Affiliation(s)
- Franziska Marx
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Malte Beccard
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Alessandro Ianiro
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Andrea Dodero
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Laura N. Neumann
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Grégory Stoclet
- Univ.
Lille, CNRS, INRAE, Centrale Lille, UMR 8207—UMET—Unité
Matériaux et Transformations, F-59000 Lille, France
| | - Christoph Weder
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Stephen Schrettl
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- TUM
School of Life Sciences, Technical University
of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| |
Collapse
|
5
|
Sun J, Wu X, Xiao J, Zhang Y, Ding J, Jiang J, Chen Z, Liu X, Wei D, Zhou L, Fan H. Hydrogel-Integrated Multimodal Response as a Wearable and Implantable Bidirectional Interface for Biosensor and Therapeutic Electrostimulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5897-5909. [PMID: 36656061 DOI: 10.1021/acsami.2c20057] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A hydrogel that fuses long-term biologic integration, multimodal responsiveness, and therapeutic functions has received increasing interest as a wearable and implantable sensor but still faces great challenges as an all-in-one sensor by itself. Multiple bonding with stimuli response in a biocompatible hydrogel lights up the field of soft hydrogel interfaces suitable for both wearable and implantable applications. Given that, we proposed a strategy of combining chemical cross-linking and stimuli-responsive physical interactions to construct a biocompatible multifunctional hydrogel. In this hydrogel system, ureidopyrimidinone/tyramine (Upy/Tyr) difunctionalization of gelatin provides abundant dynamic physical interactions and stable covalent cross-linking; meanwhile, Tyr-doped poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) acts as a conductive filler to establish electrical percolation networks through enzymatic chemical cross-linking. Thus, the hydrogel is characterized with improved conductivity, conformal biointegration features (i.e., high stretchability, rapid self-healing, and excellent tissue adhesion), and multistimuli-responsive conductivity (i.e., temperature and urea). On the basis of these excellent performances, the prepared multifunctional hydrogel enables multimodal wearable sensing integration that can simultaneously track both physicochemical and electrophysiological attributes (i.e., motion, temperature, and urea), providing a more comprehensive monitoring of human health than current wearable monitors. In addition, the electroactive hydrogel here can serve as a bidirectional neural interface for both neural recording and therapeutic electrostimulation, bringing more opportunities for nonsurgical diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu610064, Sichuan, China
| | - Xiaoyang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu610064, Sichuan, China
| | - Jiamei Xiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu610064, Sichuan, China
| | - Yusheng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu610064, Sichuan, China
| | - Jie Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu610064, Sichuan, China
| | - Ji Jiang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu610064, Sichuan, China
| | - Zhihong Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu610064, Sichuan, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu610064, Sichuan, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu610064, Sichuan, China
| |
Collapse
|
6
|
Chen Y, Yang W, Liu J, Wang Y, Luo Y. The characteristics and mechanism of hydrogen bonding assembly in linear polyurethane with multiple pendant 2‐ureido‐4[1
H
]‐pyrimidone units. J Appl Polym Sci 2022. [DOI: 10.1002/app.53520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yimei Chen
- Lab for Smart & Bioinspired Materials, College of Bioengineering Chongqing University Chongqing China
- Key Lab of Biorheological Science and Technology Ministry of Education Chongqing China
| | - Wei Yang
- Lab for Smart & Bioinspired Materials, College of Bioengineering Chongqing University Chongqing China
- Key Lab of Biorheological Science and Technology Ministry of Education Chongqing China
| | - Juan Liu
- Lab for Smart & Bioinspired Materials, College of Bioengineering Chongqing University Chongqing China
- Key Lab of Biorheological Science and Technology Ministry of Education Chongqing China
| | - Yuanliang Wang
- Lab for Smart & Bioinspired Materials, College of Bioengineering Chongqing University Chongqing China
- Key Lab of Biorheological Science and Technology Ministry of Education Chongqing China
| | - Yanfeng Luo
- Lab for Smart & Bioinspired Materials, College of Bioengineering Chongqing University Chongqing China
- Key Lab of Biorheological Science and Technology Ministry of Education Chongqing China
| |
Collapse
|
7
|
Yang X, Bai R, Zhang Z, Liu Y, Yan X. Mechanically tunable supramolecular polymer networks with different triblock backbones. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xue Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Yangang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai People's Republic of China
| |
Collapse
|
8
|
Marx F, Pal S, Sautaux J, Pallab N, Stoclet G, Weder C, Schrettl S. Plasticization of a Semicrystalline Metallosupramolecular Polymer Network. ACS POLYMERS AU 2022; 3:132-140. [PMID: 36785838 PMCID: PMC9912337 DOI: 10.1021/acspolymersau.2c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
The assembly of ligand-functionalized (macro)monomers with suitable metal ions affords metallosupramolecular polymers (MSPs). On account of the reversible and dynamic nature of the metal-ligand complexes, these materials can be temporarily (dis-)assembled upon exposure to a suitable stimulus, and this effect can be exploited to heal damaged samples, to facilitate processing and recycling, or to enable reversible adhesion. We here report on the plasticization of a semicrystalline, stimuli-responsive MSP network that was assembled by combining a low-molecular-weight building block carrying three 2,6-bis(1'-methylbenzimidazolyl) pyridine (Mebip) ligands and zinc bis(trifluoromethylsulfonyl)imide (Zn(NTf2)2). The pristine material exhibits high melting (T m = 230 °C) and glass transition (T g ≈ 157 °C) temperatures and offers robust mechanical properties between these temperatures. We show that this regime can be substantially extended through plasticization. To achieve this, the MSP network was blended with diisodecyl phthalate. The weight fraction of this plasticizer was systematically varied, and the thermal and mechanical properties of the resulting materials were investigated. We show that the T g can be lowered by more than 60 °C and the toughness above the T g is considerably increased.
Collapse
Affiliation(s)
- Franziska Marx
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| | - Subhajit Pal
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| | - Julien Sautaux
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| | - Nazim Pallab
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| | - Grégory Stoclet
- CNRS,
INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux
et Transformations, Univ. Lille, Lille F-59000, France
| | - Christoph Weder
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland,
| | - Stephen Schrettl
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland,TUM
School of Life Sciences, Technical University
of Munich, Maximus-von-Imhof-Forum 2, Freising 85354, Germany,
| |
Collapse
|
9
|
Mareliati M, Tadiello L, Guerra S, Giannini L, Schrettl S, Weder C. Metal–Ligand Complexes as Dynamic Sacrificial Bonds in Elastic Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marco Mareliati
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Luciano Tadiello
- Research & Development, Material Advanced Research, Pirelli Tyre SpA, Viale Piero e Alberto Pirelli, 25, 20126 Milano, Italy
| | - Silvia Guerra
- Research & Development, Material Advanced Research, Pirelli Tyre SpA, Viale Piero e Alberto Pirelli, 25, 20126 Milano, Italy
| | - Luca Giannini
- Research & Development, Material Advanced Research, Pirelli Tyre SpA, Viale Piero e Alberto Pirelli, 25, 20126 Milano, Italy
| | - Stephen Schrettl
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
10
|
Sautaux J, Marx F, Gunkel I, Weder C, Schrettl S. Mechanically robust supramolecular polymer co-assemblies. Nat Commun 2022; 13:356. [PMID: 35042887 PMCID: PMC8766479 DOI: 10.1038/s41467-022-28017-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Supramolecular polymers are formed through non-covalent, directional interactions between monomeric building blocks. The assembly of these materials is reversible, which enables functions such as healing, repair, or recycling. However, supramolecular polymers generally fail to match the mechanical properties of conventional commodity plastics. Here we demonstrate how strong, stiff, tough, and healable materials can be accessed through the combination of two metallosupramolecular polymers with complementary mechanical properties that feature the same metal-ligand complex as binding motif. Co-assembly yields materials with micro-phase separated hard and soft domains and the mechanical properties can be tailored by simply varying the ratio of the two constituents. On account of toughening and physical cross-linking effects, this approach affords materials that display higher strength, toughness, or failure strain than either metallosupramolecular polymer alone. The possibility to combine supramolecular building blocks in any ratio further permits access to compositionally graded objects with a spatially modulated mechanical behavior.
Collapse
Affiliation(s)
- Julien Sautaux
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Franziska Marx
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Ilja Gunkel
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland.
| | - Stephen Schrettl
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland.
| |
Collapse
|
11
|
Zhang C, Lu X, Wang Z, Xia H. Progress in Utilizing Dynamic Bonds to Fabricate Structurally Adaptive Self-Healing, Shape Memory, and Liquid Crystal Polymers. Macromol Rapid Commun 2021; 43:e2100768. [PMID: 34964192 DOI: 10.1002/marc.202100768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Indexed: 11/09/2022]
Abstract
Stimuli-responsive structurally dynamic polymers are capable of mimicking the biological systems to adapt themselves to the surrounding environmental changes and subsequently exhibiting a wide range of responses ranging from self-healing to complex shape-morphing. Dynamic self-healing polymers (SHPs), shape-memory polymers (SMPs) and liquid crystal elastomers (LCEs), which are three representative examples of stimuli-responsive structurally dynamic polymers, have been attracting broad and growing interest in recent years because of their potential applications in the fields of electronic skin, sensors, soft robots, artificial muscles, and so on. We review recent advances and challenges in the developments towards dynamic SHPs, SMPs and LCEs, focusing on the chemistry strategies and the dynamic reaction mechanisms that enhance the performances of the materials including self-healing, reprocessing and reprogramming. We compare and discuss the different dynamic chemistries and their mechanisms on the enhanced functions of the materials, where three summary tables are presented: a library of dynamic bonds and the resulting characteristics of the materials. Finally, we provide a critical outline of the unresolved issues and future perspectives on the emerging developments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chun Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xili Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
12
|
Lang M, Kumar KS. Reversible Stepwise Condensation Polymerization with Cyclization: Strictly Alternating Co-polymerization and Homopolymerization Based upon Two Orthogonal Reactions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael Lang
- Institut Theorie der Polymere, Leibniz Institut für Polymerforschung Dresden, HoheStraße 6, Dresden 01069, Germany
| | - Kiran Suresh Kumar
- Institut Theorie der Polymere, Leibniz Institut für Polymerforschung Dresden, HoheStraße 6, Dresden 01069, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, Zellescher Weg 17, Dresden 01069, Germany
| |
Collapse
|
13
|
Neumann LN, Oveisi E, Petzold A, Style RW, Thurn-Albrecht T, Weder C, Schrettl S. Dynamics and healing behavior of metallosupramolecular polymers. SCIENCE ADVANCES 2021; 7:7/18/eabe4154. [PMID: 33910908 PMCID: PMC8081362 DOI: 10.1126/sciadv.abe4154] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/10/2021] [Indexed: 05/28/2023]
Abstract
Self-healing or healable polymers can recuperate their function after physical damage. This process involves diffusion of macromolecules across severed interfaces until the structure of the interphase matches that of the pristine material. However, monitoring this nanoscale process and relating it to the mechanical recovery remain elusive. We report that studying diffusion across healed interfaces and a correlation of contact time, diffusion depth, and mechanical properties is possible when two metallosupramolecular polymers assembled with different lanthanoid salts are mended. The materials used display similar properties, while the metal ions can be tracked with high spatial resolution by energy-dispersive x-ray spectrum imaging. We find that healing actual defects requires an interphase thickness in excess of 100 nm, 10 times more than previously established for self-adhesion of smooth films of glassy polymers.
Collapse
Affiliation(s)
- Laura N Neumann
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Emad Oveisi
- Interdisciplinary Centre for Electron Microscopy, EPFL, 1015 Lausanne, Switzerland
| | - Albrecht Petzold
- Naturwissenschaftliche Fakultät II-Chemie, Physik und Mathematik, Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 3, 06120 Halle (Saale), Germany
| | - Robert W Style
- Department of Materials, Soft and Living Materials, ETH Zürich, Vladimir-Prelog-Weg 10, 8093 Zürich, Switzerland
| | - Thomas Thurn-Albrecht
- Naturwissenschaftliche Fakultät II-Chemie, Physik und Mathematik, Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 3, 06120 Halle (Saale), Germany
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Stephen Schrettl
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| |
Collapse
|
14
|
Jiao D, Lossada F, Guo J, Skarsetz O, Hoenders D, Liu J, Walther A. Electrical switching of high-performance bioinspired nanocellulose nanocomposites. Nat Commun 2021; 12:1312. [PMID: 33637751 PMCID: PMC7910463 DOI: 10.1038/s41467-021-21599-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023] Open
Abstract
Nature fascinates with living organisms showing mechanically adaptive behavior. In contrast to gels or elastomers, it is profoundly challenging to switch mechanical properties in stiff bioinspired nanocomposites as they contain high fractions of immobile reinforcements. Here, we introduce facile electrical switching to the field of bioinspired nanocomposites, and show how the mechanical properties adapt to low direct current (DC). This is realized for renewable cellulose nanofibrils/polymer nanopapers with tailor-made interactions by deposition of thin single-walled carbon nanotube electrode layers for Joule heating. Application of DC at specific voltages translates into significant electrothermal softening via dynamization and breakage of the thermo-reversible supramolecular bonds. The altered mechanical properties are reversibly switchable in power on/power off cycles. Furthermore, we showcase electricity-adaptive patterns and reconfiguration of deformation patterns using electrode patterning techniques. The simple and generic approach opens avenues for bioinspired nanocomposites for facile application in adaptive damping and structural materials, and soft robotics.
Collapse
Affiliation(s)
- Dejin Jiao
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Francisco Lossada
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Jiaqi Guo
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Oliver Skarsetz
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Daniel Hoenders
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
- A3BMS Lab, Department of Chemistry, University of Mainz, Mainz, Germany
| | - Jin Liu
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Andreas Walther
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany.
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany.
- A3BMS Lab, Department of Chemistry, University of Mainz, Mainz, Germany.
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
15
|
Hayashi M, Kimura T, Oba Y, Takasu A. One‐Pot Synthesis of Dual Supramolecular Associative PMMA‐Based Copolymers and the Precise Thermal Property Tuning. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mikihiro Hayashi
- Department of Life Science and Applied Chemistry Graduated School of Engineering Nagoya Institute of Technology Gokiso‐cho, Showa‐ku Nagoya Aichi 466‐8555 Japan
| | - Takahiro Kimura
- Department of Life Science and Applied Chemistry Graduated School of Engineering Nagoya Institute of Technology Gokiso‐cho, Showa‐ku Nagoya Aichi 466‐8555 Japan
| | - Yuta Oba
- Department of Life Science and Applied Chemistry Graduated School of Engineering Nagoya Institute of Technology Gokiso‐cho, Showa‐ku Nagoya Aichi 466‐8555 Japan
| | - Akinori Takasu
- Department of Life Science and Applied Chemistry Graduated School of Engineering Nagoya Institute of Technology Gokiso‐cho, Showa‐ku Nagoya Aichi 466‐8555 Japan
| |
Collapse
|
16
|
Okten Besli NS, Orakdogen N. Charge-balanced terpolymer poly(diethylaminoethyl methacrylate-hydroxyethyl methacrylate-2-acrylamido-2-methyl-propanesulfonic acid) hydrogels and cryogels: scaling parameters and correlation with composition. SOFT MATTER 2020; 16:10470-10487. [PMID: 33063815 DOI: 10.1039/d0sm01306d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The scaling laws relating the preparation conditions to the swelling degree, reduced modulus and effective crosslinking density of poly(diethylaminoethyl methacrylate-co-hydroxyethyl methacrylate-co-2-acrylamido-2-methyl-propanesulfonic acid), henceforth designated as PDHA, gels prepared by radical crosslinking copolymerization in a solvent mixture were reported. Charge-balanced terpolymer PDHA hydrogels and cryogels (PDHA-Hgs and Cgs) were prepared in different monomer feed compositions. The swelling dependence of the reduced modulus was described by a power law relationship Gr≈ (φV)m with an exponent of m = -0.30 at low swelling degree, while in the high swelling region the scaling becomes 0.21, indicating the finite extensibility of the network chains. The scaling exponent for the swelling degree and terpolymer composition, φV≈ (Nν)m, was found to be -0.13, indicating the increasing extent of the topological constraints arising from the trapped entanglements. By combining elasticity and swelling results, the scaling relationship between the apparent crosslink density and HEMA content used in the terpolymer feed was obtained as a cubic polynomial of the mol% of HEMA. In the HEMA-rich terpolymer PDHA Hgs and Cgs, the swelling degree was possibly controlled by the HEMA part of the terpolymer network, while the presence of DEAEM units in the network triggered the thermoresponsive swelling behavior. The dependence of interaction parameter χ on the volume fraction of the crosslinked terpolymer network in the swollen gel ν2 was evaluated and the results revealed extremely strong concentration dependence of χ for all terpolymer samples. Because of their inherent properties, the resulting terpolymer gels might contribute to the improvement of the loading capacity of polymers used in anticancer drug delivery systems.
Collapse
Affiliation(s)
- Nur Sena Okten Besli
- Istanbul Technical University, Department of Chemistry, Soft Materials Research Laboratory, 34469, Maslak, Istanbul, Turkey.
| | | |
Collapse
|
17
|
Wu Z, Li D, Yan G, Wang H, Liu S, Yang J, Zhang G. Heat-resistant and shape-memory metallo-supramolecules with simultaneously switchable fluorescence behavior supported by tridentate N3 group. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Thompson CB, Korley LTJ. 100th Anniversary of Macromolecular Science Viewpoint: Engineering Supramolecular Materials for Responsive Applications-Design and Functionality. ACS Macro Lett 2020; 9:1198-1216. [PMID: 35638621 DOI: 10.1021/acsmacrolett.0c00418] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supramolecular polymers allow access to dynamic materials, where noncovalent interactions can be used to offer both enhanced material toughness and stimuli-responsiveness. The versatility of self-assembly has enabled these supramolecular motifs to be incorporated into a wide array of glassy and elastomeric materials; moreover, the interaction of these noncovalent motifs with their environment has shown to be a convenient platform for controlling material properties. In this Viewpoint, supramolecular polymers are examined through their self-assembly chemistries, approaches that can be used to control their self-assembly (e.g., covalent cross-links, nanofillers, etc.), and how the strategic application of supramolecular polymers can be used as a platform for designing the next generation of smart materials. This Viewpoint provides an overview of the aspects that have garnered interest in supramolecular polymer chemistry, while also highlighting challenges faced and innovations developed by researchers in the field.
Collapse
Affiliation(s)
- Chase B. Thompson
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, Newark, Delaware 19716, United States
| | - LaShanda T. J. Korley
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
19
|
Zhang R, Zhang C, Yang Z, Wu Q, Sun P, Wang X. Hierarchical Dynamics in a Transient Polymer Network Cross-Linked by Orthogonal Dynamic Bonds. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00407] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chi Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhijun Yang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qiang Wu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Pingchuan Sun
- Key Laboratory of Functional Polymer Materials of the Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P. R. China
| | - Xiaoliang Wang
- Key Laboratory of High-Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
20
|
Xia D, Wang P, Ji X, Khashab NM, Sessler JL, Huang F. Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host–Guest Interactions. Chem Rev 2020; 120:6070-6123. [DOI: 10.1021/acs.chemrev.9b00839] [Citation(s) in RCA: 373] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Pi Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaofan Ji
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Niveen M. Khashab
- Smart Hybrid Materials (SHMS) Laboratory, Chemical Science Program, King Abdullah University of Science and Technology (KAUST), 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai 200444, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
21
|
Zhang H, Wang D, Wu N, Li C, Zhu C, Zhao N, Xu J. Recyclable, Self-Healing, Thermadapt Triple-Shape Memory Polymers Based on Dual Dynamic Bonds. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9833-9841. [PMID: 31989812 DOI: 10.1021/acsami.9b22613] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fabricating a single polymer network with a combination of a multi-shape memory effect (multiple-SME), solid-state plasticity, recyclability and self-healing behavior remains a challenge. We designed imine bond and ionic hydrogen bond dual cross-linked polybutadiene (PB) networks. The resulting PB networks showed a triple-shape memory effect, where imine bonds could be used to fix the permanent shape and ionic hydrogen bonds and glass transition acted as the transition segments for fixing/releasing the temporary shapes. Additionally, the dual dynamic bonds offered PB networks outstanding solid-state plasticity, recyclability and self-healing behavior. This strategy provides some insights for preparing shape memory polymers integrating multiple-SME and multi-functionality.
Collapse
Affiliation(s)
- Huan Zhang
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering , Shenzhen University , Shenzhen , Guangdong 518060 , China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Ningning Wu
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Cuihua Li
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering , Shenzhen University , Shenzhen , Guangdong 518060 , China
| | - Caizhen Zhu
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering , Shenzhen University , Shenzhen , Guangdong 518060 , China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|
22
|
Hisano N, Hirao T, Haino T. A dual redox-responsive supramolecular polymer driven by molecular recognition between bisporphyrin and trinitrofluorenone. Chem Commun (Camb) 2020; 56:7553-7556. [DOI: 10.1039/d0cc02474k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A dual redox-responsive supramolecular polymer driven by molecular recognition between bisporphyrin (bisPor) and trinitrofluorenone (TNF) has been developed.
Collapse
Affiliation(s)
- Naoyuki Hisano
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Hiroshima 739-8562
- Japan
| | - Takehiro Hirao
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Hiroshima 739-8562
- Japan
| | - Takeharu Haino
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Hiroshima 739-8562
- Japan
| |
Collapse
|
23
|
Dzhardimalieva GI, Yadav BC, Singh S, Uflyand IE. Self-healing and shape memory metallopolymers: state-of-the-art and future perspectives. Dalton Trans 2020; 49:3042-3087. [DOI: 10.1039/c9dt04360h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent achievements and problems associated with the use of metallopolymers as self-healing and shape memory materials are presented and evaluated.
Collapse
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers
- The Institute of Problems of Chemical Physics RAS
- Chernogolovka
- 142432 Russian Federation
| | - Bal C. Yadav
- Nanomaterials and Sensors Research Laboratory
- Department of Physics
- Babasaheb Bhimrao Ambedkar University
- Lucknow-226025
- India
| | - Shakti Singh
- Nanomaterials and Sensors Research Laboratory
- Department of Physics
- Babasaheb Bhimrao Ambedkar University
- Lucknow-226025
- India
| | - Igor E. Uflyand
- Department of Chemistry
- Southern Federal University
- Rostov-on-Don
- 344006 Russian Federation
| |
Collapse
|
24
|
Oba Y, Hayashi M, Takasu A. One-pot synthesis of dual supramolecular associative copolymers by using a novel acrylate monomer bearing urethane and pendant pyridine groups. Polym Chem 2020. [DOI: 10.1039/c9py01824g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient, one-pot synthesis of dual supramolecular associative copolymers is demonstrated by utilizing a novel acrylate monomer bearing urethane and pendant pyridine groups.
Collapse
Affiliation(s)
- Yuta Oba
- Department of Life Science and Applied Chemistry
- Graduated School of Engineering
- Nagoya Institute of Technology
- Nagoya-city
- Japan
| | - Mikihiro Hayashi
- Department of Life Science and Applied Chemistry
- Graduated School of Engineering
- Nagoya Institute of Technology
- Nagoya-city
- Japan
| | - Akinori Takasu
- Department of Life Science and Applied Chemistry
- Graduated School of Engineering
- Nagoya Institute of Technology
- Nagoya-city
- Japan
| |
Collapse
|
25
|
Hohl DK, Ferahian AC, Montero de Espinosa L, Weder C. Toughening of Glassy Supramolecular Polymer Networks. ACS Macro Lett 2019; 8:1484-1490. [PMID: 35651179 DOI: 10.1021/acsmacrolett.9b00710] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A modular approach for the design of two-component supramolecular polymer (SMP) networks is reported. A series of materials was prepared by blending two (macro)monomers based on trifunctional poly(propylene oxide) (PPO) cores that were end-functionalized with hydrogen-bonding 2-ureido-4[1H]pyrimidinone (UPy) groups. One monomer was based on a PPO core with a number-average molecular weight (Mn) of 440 g mol-1. The SMP formed by this building block is a glassy, brittle material with a glass transition temperature (Tg) of about 86 °C. The second monomer featured a PPO core with an Mn of 3000 g mol-1. The SMP formed by this building block adopts a microphase-segregated morphology that features a rubbery phase with a Tg of -58 °C and crystalline domains formed by the UPy assemblies, which act as physical cross-links and melt around 90-130 °C. Combining the two components allows access to microphase-segregated blends comprised of a rubbery phase constituted by the high-Mn cores, a glassy phase formed by the low-Mn component, and a crystalline phase formed by UPy groups. This allowed tailoring of the mechanical properties and afforded materials with storage moduli of 37-609 MPa, tensile strengths of 2.0-5.4 MPa, and melt viscosities of as low as 11 Pa s at 140 °C. The materials can be used as reversible adhesives.
Collapse
Affiliation(s)
- Diana Kay Hohl
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Anne-Cécile Ferahian
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
26
|
Yang Y, Ni XL, Xu JF, Zhang X. Fabrication of nor-seco-cucurbit[10]uril based supramolecular polymers via self-sorting. Chem Commun (Camb) 2019; 55:13836-13839. [PMID: 31663546 DOI: 10.1039/c9cc07127j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A nor-seco-CB[10] (ns-CB[10]) based linear supramolecular polymer is firstly fabricated via self-sorting strategy. Through self-sorting of the monomer, ns-CB[10] and CB[7], the unfavorable factors for supramolecular polymerization are avoided. Therefore, supramolecular polymer with high molecular weight is successfully fabricated, and the molecular weight can be controllably regulated.
Collapse
Affiliation(s)
- Yuchong Yang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | | | | | | |
Collapse
|
27
|
Berda EB, Deravi LF, Foster EJ, Simon Y, Thuo MM. Virtual Issue: Next-Generation Smart Materials. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Erik B. Berda
- Department of Chemistry and Materials Science Program, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Leila F. Deravi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - E. Johan Foster
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yoan Simon
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Martin M. Thuo
- Department of Materials Science & Engineering and Department of Electrical & Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
28
|
Thompson CB, Chatterjee S, Korley LT. Gradient supramolecular interactions and tunable mechanics in polychaete jaw inspired semi-interpenetrating networks. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Zhou L, Ma T, Li T, Ma X, Yin J, Jiang X. Dynamic Interpenetrating Polymer Network (IPN) Strategy for Multiresponsive Hierarchical Pattern of Reversible Wrinkle. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15977-15985. [PMID: 30964635 DOI: 10.1021/acsami.8b22216] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dynamic micro-/nanowrinkle patterns with response to multienvironmental stimuli can offer a facile method for on-demand regulation of surface properties, thus allowing for generation of a smart surface. Here a practical yet robust strategy is described to fabricate redox, light and thermal responsive wrinkle by building dynamic double interpenetrating polymer network (IPN) as the top layer for a typical bilayer system. IPNs were constructed through the photochemical reaction of a mixture comprised of light-sensitive anthracene-containing polymer (PAN) and redox-sensitive disulfide-containing diacrylate monomer (DSDA). Thanks to the dynamic covalent reversible C-C bond in PAN and S-S bond in DSDA, the morphology of wrinkled surface not only can be reversibly and precisely (micrometer scale) tailored to all kinds of complicated hierarchical pattern permanently, but also can be controlled temporarily by irradiation of near-infrared light (NIR). A sine wave model is proposed to investigate the dynamics of real-time reversible wrinkle evolution. This general approach based on IPN allows independent multistimuli control over wettability and optical properties on the wrinkled surface, thus, presents a considerable alternative to implement a smart surface.
Collapse
Affiliation(s)
- Liangwei Zhou
- School of Chemistry & Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, State Key Laboratory for Metal Matrix Composite Materials , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Tianjiao Ma
- School of Chemistry & Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, State Key Laboratory for Metal Matrix Composite Materials , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Tiantian Li
- School of Chemistry & Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, State Key Laboratory for Metal Matrix Composite Materials , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Xiaodong Ma
- School of Chemistry & Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, State Key Laboratory for Metal Matrix Composite Materials , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Jie Yin
- School of Chemistry & Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, State Key Laboratory for Metal Matrix Composite Materials , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
- School of Physical Science and Technology , Shanghai Tech University , Shanghai 201210 , P.R. China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, State Key Laboratory for Metal Matrix Composite Materials , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| |
Collapse
|
30
|
Ferahian AC, Balog S, Oveisi E, Weder C, Montero de Espinosa L. Hard Phase Crystallization Directs the Phase Segregation of Hydrogen-Bonded Supramolecular Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Anne-Cécile Ferahian
- Adolphe Merkle Institute, Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Sandor Balog
- Adolphe Merkle Institute, Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Emad Oveisi
- Interdisciplinary Centre for Electron Microscopy, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Lucas Montero de Espinosa
- Adolphe Merkle Institute, Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
31
|
Lamm ME, Song L, Wang Z, Lamm B, Fu L, Tang C. A facile approach to thermomechanically enhanced fatty acid-containing bioplastics using metal–ligand coordination. Polym Chem 2019. [DOI: 10.1039/c9py01479a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic metal–ligand coordination creates physical crosslinking and thus improves chain entanglements for enhancing the thermomechanical properties of biobased polymers.
Collapse
Affiliation(s)
- Meghan E. Lamm
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Lingzhi Song
- Biomass Molecular Engineering Center
- Anhui Agricultural University
- Hefei
- China
| | - Zhongkai Wang
- Biomass Molecular Engineering Center
- Anhui Agricultural University
- Hefei
- China
| | - Benjamin Lamm
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Lin Fu
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| |
Collapse
|