1
|
Rimmele M, Sukpoonprom P, Marsh AV, Aniés F, Yazmaciyan A, Harrison G, Fatayer S, Pattanasattayavong P, Gasparini N, Panidi J, Heeney M. Influence of Selenium on the Optoelectronic Properties of a Series of Structurally Simple p-type Polymers for Organic Thin-Film Transistors. Macromol Rapid Commun 2025:e2500059. [PMID: 40307167 DOI: 10.1002/marc.202500059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/25/2025] [Indexed: 05/02/2025]
Abstract
Tremendous efforts have been dedicated to improving the performance of organic thin-film transistors (OTFTs) through careful polymer design. Sulfur-containing polymers have been studied in-depth; however, their selenium-containing analogs remain rarer. Herein, a series of polymers of low synthetic complexity with systematically increasing selenium content are presented. Three novel polymers FO6-Se, FO6-BS-T, and FO6-BS-Se are synthesized using a facile two-step protocol, combining combinations of selenophene, thiophene, benzothiadiazole (BT), and benzoselenadiazole (BS) units. The optical, electrochemical, and morphological properties of these polymers are comprehensively analyzed, revealing interesting structure-property relationships. Results show a significant bathochromic shift in absorption and emission spectra upon increasing Se content. Charge transport properties are evaluated in OTFTs, with FO6-BS-T exhibiting the highest hole mobility of 0.038 cm2V-1s-1 when annealed at 100 °C. Grazing-incidence wide-angle X-ray scattering (GIWAXS) studies reveal reduced crystallinity upon BS incorporation and density functional theory (DFT) calculations indicate increased backbone twisting upon BS inclusion compared to BT. This work demonstrates how systematic selenium incorporation alters polymer properties, particularly frontier molecular levels, and morphology, contributing to the understanding of selenium-containing scalable polymers for potential application in organic thin-film transistors.
Collapse
Affiliation(s)
- Martina Rimmele
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Patipan Sukpoonprom
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Adam V Marsh
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Filip Aniés
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Aren Yazmaciyan
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - George Harrison
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Shadi Fatayer
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Pichaya Pattanasattayavong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Julianna Panidi
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Conjugated polymers based on selenophene building blocks. Polym J 2022. [DOI: 10.1038/s41428-022-00731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe intrinsic flexibility, solution processability, and optoelectronic properties of semiconducting conjugated polymers make them ideal candidates for use in a wide range of next-generation electronic devices. A virtually unlimited chemical design space has led to diverse polymeric architectures made from combinations of smaller molecular building blocks with desirable functionalities. Of these, thiophene is undoubtedly the most common due to its mixture of synthetic versatility, polymer backbone planarizing effects, and good optoelectronic characteristics. However, the success of thiophene has meant that other heterocycles, such as selenophene, remain relatively underexplored. This focus review discusses the challenges and material advantages of incorporating selenophene into conjugated polymer systems within the context of our contributions to the field. The early studies of poorly performing electrochemically synthesized polyselenophenes are outlined, progressing onto the model chemically synthesized alkylated homopolymers that revealed the key consequences of selenophene addition. We then review the various donor and donor-acceptor copolymer strategies that have exploited the properties of the selenium atom to enhance the performance of solar cells, transistors, and other organic electronic devices. Finally, we give our perspective on the state of the field and the fundamental material optimization studies required to realize the full potential of selenophene-containing conjugated polymers.
Collapse
|
3
|
Xu H, Ye S, Zhao R, Seferos DS. Homogeneous Synthesis of Monodisperse Sequence‐Defined Conjugated Oligomers by Temperature Cycling. Angew Chem Int Ed Engl 2022; 61:e202210340. [DOI: 10.1002/anie.202210340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Hao Xu
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Shuyang Ye
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Ruyan Zhao
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Dwight S. Seferos
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
- Department of Chemical Engineering and Applied Chemistry University of Toronto 200 College Street Toronto Ontario M5S 3E5 Canada
| |
Collapse
|
4
|
Xu H, Ye S, Zhao R, Seferos DS. Homogeneous Synthesis of Monodisperse Sequence‐Defined Conjugated Oligomers by Temperature Cycling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hao Xu
- University of Toronto - St George Campus: University of Toronto Chemistry CANADA
| | - Shuyang Ye
- University of Toronto - St George Campus: University of Toronto Chemistry CANADA
| | - Ruyan Zhao
- University of Toronto - St George Campus: University of Toronto Chemistry CANADA
| | - Dwight S. Seferos
- University of Toronto Chemistry 80 St. George Street M5S 3H6 Toronto CANADA
| |
Collapse
|
5
|
Ye S, Lotocki V, Xu H, Seferos DS. Group 16 conjugated polymers based on furan, thiophene, selenophene, and tellurophene. Chem Soc Rev 2022; 51:6442-6474. [PMID: 35843215 DOI: 10.1039/d2cs00139j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five-membered aromatic rings containing Group 16 elements (O, S, Se, and Te), also referred as chalcogenophenes, are ubiquitous building blocks for π-conjugated polymers (CPs). Among these, polythiophenes have been established as a model system to study the interplay between molecular structure, solid-state organization, and electronic performance. The judicious substitution of alternative heteroatoms into polythiophenes is a promising strategy for tuning their properties and improving the performance of derived organic electronic devices, thus leading to the recent abundance of CPs containing furan, selenophene, and tellurophene. In this review, we first discuss the current status of Kumada, Negishi, Murahashi, Suzuki-Miyaura, and direct arylation polymerizations, representing the best routes to access well-defined chalcogenophene-containing homopolymers and copolymers. The self-assembly, optical, solid-state, and electronic properties of these polymers and their influence on device performance are then summarized. In addition, we highlight post-polymerization modifications as effective methods to transform polychalcogenophene backbones or side chains in ways that are unobtainable by direct polymerization. Finally, the major challenges and future outlook in this field are presented.
Collapse
Affiliation(s)
- Shuyang Ye
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Victor Lotocki
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Hao Xu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada. .,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
6
|
Tulsi DK, Simmons DS. Hierarchical Shape-Specified Model Polymer Nanoparticles via Copolymer Sequence Control. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Davindra K. Tulsi
- The University of South Florida, 4202 East Fowler Avenue, ENB 118, Tampa, Florida 33620, United States
| | - David S. Simmons
- The University of South Florida, 4202 East Fowler Avenue, ENB 118, Tampa, Florida 33620, United States
| |
Collapse
|
7
|
Kawakami M, Schulz KHG, Varni A, Tormena CF, Gil RR, Noonan K. Statistical Copolymers of Thiophene-3-Carboxylates and Selenophene-3-Carboxylates; 77Se NMR as a Tool to Examine Copolymer Sequence in Selenophene-Based Conjugated Polymers. Polym Chem 2022. [DOI: 10.1039/d2py00777k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we demonstrate that homopolymerization and statistical copolymerization of 2-ethylhexyl thiophene-3-carboxylate and 2-ethylhexyl selenophene-3-carboxylate monomers is possible via Suzuki-Miyaura cross-coupling. A commercially available palladium catalyst ([1,3-bis(2,6-di-3-pentylphenyl)imidazol-2-ylidene](3-chloropyridyl)dichloropalladium(II) or PEPPSI-IPent) was employed...
Collapse
|
8
|
Cheng S, Zhao R, Seferos DS. Precision Synthesis of Conjugated Polymers Using the Kumada Methodology. Acc Chem Res 2021; 54:4203-4214. [PMID: 34726058 DOI: 10.1021/acs.accounts.1c00556] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the discovery of conductive poly(acetylene), the study of conjugated polymers has remained an active and interdisciplinary frontier between polymer chemistry, polymer physics, computation, and device engineering. One of the ultimate goals of polymer science is to reliably synthesize structures, similar to small molecule synthesis. Kumada catalyst-transfer polymerization (KCTP) is a powerful tool for synthesizing conjugated polymers with predictable molecular weights, narrow dispersities, specific end groups, and complex backbone architectures. However, expanding the monomer scope beyond the well-studied 3-alkylthiophenes to include electron-deficient and complex heterocycles has been difficult. Revisiting the successful applications of KCTP can help us gain new insight into the CTP mechanisms and thus inspire breakthroughs in the controlled polymerization of challenging π-conjugated monomers.In this Account, we highlight our efforts over the past decade to achieve controlled synthesis of homopolymers (p-type and n-type), copolymers (diblock and statistical), and monodisperse high oligomers. We first give a brief introduction of the mechanism and state-of-the-art of KCTP. Since the extent of polymerization control is determined by steric and electronic effects of both the catalyst and monomer, the polymerization can be optimized by modifying monomer and catalyst structures, as well as finding a well-matched monomer-catalyst system. We discuss the effects of side-chain steric hindrance and halogens in the context of heavy atom substituted monomers. By moving the side-chain branch point one carbon atom away from the heterocycle to alleviate steric crowding and stabilize the catalyst resting state, we were able to successfully control the polymerization of new tellurophene monomers. Inspired by innocent role of the sterically encumbered 2-transmetalated 3-alkylthiophene monomer, we introduce the treatment of hygroscopic monomers with a bulky Grignard compound as a water-scavenger for the improved synthesis of water-soluble conjugated polymers. For challenging electron-deficient monomers, we discuss the design of new Ni(II)diimine catalysts with electron-donating character which enhance the stability of the association complex between the catalyst and the growing polymer chain, resulting in the quasi-living synthesis of n-type polymers. Beyond n-type homopolymers, the Ni(II)diimine catalysts are also capable of producing electron-rich and electron-deficient diblock and statistical copolymers. We discuss how density functional theory (DFT) calculations elucidate the role of catalyst steric and electronic effects in controlling the synthesis of π-conjugated polymers. Moreover, we demonstrate the synthesis of monodisperse high oligomers by temperature cycling, which takes full advantage of the unique character of KCTP in that it proceeds through distinct intermediates that are not reactive. The insight we gained thus far leads to the first example of isolated living conjugated polymer chains prepared by a standard KCTP procedure, with general applicability to different monomers and catalytic systems. In summarizing a decade of innovation in KCTP, we hope this Account will inspire future development in the field to overcome key challenges including the controlled synthesis of electron-deficient heterocycles, complex and high-performance systems, and degradable and recyclable materials as well as cutting-edge catalyst design.
Collapse
Affiliation(s)
- Susan Cheng
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ruyan Zhao
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Dwight S. Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
9
|
Huang D, Peng J. Correlating crystalline structure with charge mobility in conjugated statistical copolymers for field-effect transistors. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Kraikin VA, Fatykhov AA, Gileva NG, Kravchenko AA, Salazkin SN. NMR study of dyadic and triadic splitting in copoly(arylene)phthalides based on diphenyl oxide and diphenyl sulfide. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:61-73. [PMID: 32702159 DOI: 10.1002/mrc.5079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
All 13 C NMR signals of the poly(arylene) polymers, O-1, S-7, OS-4, OOS-3, OOOS-2, SSO-5, and SSSO-6 (where O is a diphenyleneoxiphthalide unit and S is a diphenylenethiophthalide unit) in dyads and triads were assigned unequivocally with two-dimensional NMR techniques (ge-2D [1 H-1 H] COSY, ge-2D [1 H-13 C] HSQC, and ge-2D [1 H-13 C] HMBC), and for each atom, the increments of the shifts are determined. For structurally similar carbon atoms of the phthalide cycle and heteroaromatic fragments of the skeletal chain, additive signal splitting schemes in phthalide centered dyads and in diphenylene oxide and in diphenylene sulfide centered triads are considered, based on taking into account the contributions to their shielding of adjacent and distant substituents. It was shown that the nature of the splitting of the signals of each of the 20 carbon atoms in 3,3-bisphenylphthalide fragments is determined by the type of carbon atom (tertiary or quaternary, even or odd), the type of heteroatoms in adjacent heteroaromatic fragments, their distance from the identified carbon nucleus, and their polyad symmetry. The results obtained in this article will greatly facilitate our further studies and, in particular, will allow us to study the microstructure of statistical copolymers based on the asymmetric OS monomer at the dyad and triad levels.
Collapse
Affiliation(s)
| | - Akhnef A Fatykhov
- Ufa Institute of Chemistry, Russian Academy of Sciences, Ufa, Russia
| | - Natalya G Gileva
- Ufa Institute of Chemistry, Russian Academy of Sciences, Ufa, Russia
| | | | - Sergey N Salazkin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
Elacqua E, Koehler SJ, Hu J. Electronically Governed ROMP: Expanding Sequence Control for Donor–Acceptor Conjugated Polymers. Synlett 2020. [DOI: 10.1055/s-0040-1707180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Controlling the primary sequence of synthetic polymers remains a grand challenge in chemistry. A variety of methods that exert control over monomer sequence have been realized wherein differential reactivity, pre-organization, and stimuli-response have been key factors in programming sequence. Whereas much has been established in nonconjugated systems, π-extended frameworks remain systems wherein subtle structural changes influence bulk properties. The recent introduction of electronically biased ring-opening metathesis polymerization (ROMP) extends the repertoire of feasible approaches to prescribe donor–acceptor sequences in conjugated polymers, by enabling a system to achieve both low dispersity and controlled polymer sequences. Herein, we discuss recent advances in obtaining well-defined (i.e., low dispersity) polymers featuring donor–acceptor sequence control, and present our design of an electronically ambiguous (4-methoxy-1-(2-ethylhexyloxy) and benzothiadiazole-(donor–acceptor-)based [2.2]paracyclophanediene monomer that undergoes electronically dictated ROMP. The resultant donor–acceptor polymers were well-defined (Đ = 1.2, Mn > 20 k) and exhibited lower energy excitation and emission in comparison to ‘sequence-ill-defined’ polymers. Electronically driven ROMP expands on prior synthetic methods to attain sequence control, while providing a promising platform for further interrogation of polymer sequence and resultant properties.1 Introduction to Sequence Control2 Sequence Control in Polymers3 Multistep-Synthesis-Driven Sequence Control4 Catalyst-Dictated Sequence Control5 Electronically Governed Sequence Control6 Conclusions
Collapse
|
12
|
Yu H, Li S, Schwieter KE, Liu Y, Sun B, Moore JS, Schroeder CM. Charge Transport in Sequence-Defined Conjugated Oligomers. J Am Chem Soc 2020; 142:4852-4861. [PMID: 32069403 DOI: 10.1021/jacs.0c00043] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A major challenge in synthetic polymers lies in understanding how primary monomer sequence affects materials properties. In this work, we show that charge transport in single molecule junctions of conjugated oligomers critically depends on the primary sequence of monomers. A series of sequence-defined oligomers ranging from two to seven units was synthesized by an iterative approach based on the van Leusen reaction, providing conjugated oligomers with backbones consisting of para-linked phenylenes connected to oxazole, imidazole, or nitro-substituted pyrrole. The charge transport properties of these materials were characterized using a scanning tunneling microscope-break junction (STM-BJ) technique, thereby enabling direct measurement of molecular conductance for sequence-defined dimers, trimers, pentamers, and a heptamer. Our results show that oligomers with specific monomer sequences exhibit unexpected and distinct charge transport pathways that enhance molecular conductance more than 10-fold. A systematic analysis using monomer substitution patterns established that sequence-defined pentamers containing imidazole or pyrrole groups in specific locations provide molecular attachment points on the backbone to the gold electrodes, thereby giving rise to multiple conductance pathways. These findings reveal the subtle but important role of molecular structure including steric hindrance and directionality of heterocycles in determining charge transport in these molecular junctions. This work brings new understanding for designing molecular electronic components.
Collapse
Affiliation(s)
- Hao Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Songsong Li
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kenneth E Schwieter
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yun Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Boran Sun
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S Moore
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Charles M Schroeder
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Garson P, Campello A, Stein MAS, Smilgies DM. A simple sample-changing robot for grazing-incidence X-ray scattering. J Appl Crystallogr 2020. [DOI: 10.1107/s1600576719014924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A simple sample-changing robot for combinatorial studies using grazing-incidence X-ray scattering has been designed, built and commissioned. The robot can be conveniently loaded with up to 20 samples. Use of the robot cuts down significantly on the time needed to access and interlock the beamline hutch. The robot was successfully employed by user groups at the CHESS D1 station.
Collapse
|
14
|
Varni AJ, Fortney A, Baker MA, Worch JC, Qiu Y, Yaron D, Bernhard S, Noonan KJT, Kowalewski T. Photostable Helical Polyfurans. J Am Chem Soc 2019; 141:8858-8867. [DOI: 10.1021/jacs.9b01567] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Anthony J. Varni
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-2617, United States
| | - Andria Fortney
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-2617, United States
| | - Matthew A. Baker
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-2617, United States
| | - Joshua C. Worch
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-2617, United States
| | - Yunyan Qiu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-2617, United States
| | - David Yaron
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-2617, United States
| | - Stefan Bernhard
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-2617, United States
| | - Kevin J. T. Noonan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-2617, United States
| | - Tomasz Kowalewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-2617, United States
| |
Collapse
|