1
|
Van Guyse JFR, Bernhard Y, Podevyn A, Hoogenboom R. Non-activated Esters as Reactive Handles in Direct Post-Polymerization Modification. Angew Chem Int Ed Engl 2023; 62:e202303841. [PMID: 37335931 DOI: 10.1002/anie.202303841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/26/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Non-activated esters are prominently featured functional groups in polymer science, as ester functional monomers display great structural diversity and excellent compatibility with a wide range of polymerization mechanisms. Yet, their direct use as a reactive handle in post-polymerization modification has been typically avoided due to their low reactivity, which impairs the quantitative conversion typically desired in post-polymerization modification reactions. While activated ester approaches are a well-established alternative, the modification of non-activated esters remains a synthetic and economically valuable opportunity. In this review, we discuss past and recent efforts in the utilization of non-activated ester groups as a reactive handle to facilitate transesterification and aminolysis/amidation reactions, and the potential of the developed methodologies in the context of macromolecular engineering.
Collapse
Affiliation(s)
- Joachim F R Van Guyse
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Yann Bernhard
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
- Université de Lorraine, UMR CNRS 7053 L2CM, Faculté des Sciences et Technologies, BP 70239, 54506, Vandoeuvre-lès-Nancy Cedex, France
| | - Annelore Podevyn
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Fan Z, Fang Z, Tao P, Jin L, Zhang G. Degradation of aniline: sodium alginate/modified pomelo cellulose double cross-linking system as a bacterial immobilization carrier. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2607-2621. [PMID: 37318914 PMCID: wst_2023_168 DOI: 10.2166/wst.2023.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pectin cellulose grafted with glycidyltrimethylammoniochloride (GTMAC) was successfully obtained following the processes of depectinfibrillation and cellulose cationization using ordinary Shatian pomelo peel produced in Yongzhou, Hunan, as the raw material. This is the first report on a new type of functionalized sodium alginate-immobilized material prepared from the fibers of pomelo peel. The material was prepared by combining modified pomelo peel cellulose and sodium alginate following the processes of physical and chemical double cross-linking. The prepared material was used to embed the target bacteria to achieve the biodegradation of p-aniline. The concentration of CaCl2 was adjusted when the alginate gelled, and the alginate to yuzu peel cellulose ratio was tuned. The immobilized material-embedded bacteria help achieve the best degradation effect. Bacteria are embedded during the process of the degradation of aniline wastewater, and the functionalization of the cellulose/sodium alginate-immobilized material results in unique surface structure performance. The performance of the prepared system is better than that of the single sodium alginate-based material characterized by a large surface area and good mechanical properties. The degradation efficiency of the system is improved significantly for the cellulose materials, and the prepared materials can potentially find applications in the field of bacteria-fixed technology.
Collapse
Affiliation(s)
- Zheng Fan
- Membrane Separation and Water Treatment Center, Zhejiang University of Technology, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Hangzhou 310014, China E-mail:
| | - Zhenzhen Fang
- School of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Peng Tao
- School of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Laiyun Jin
- School of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guoliang Zhang
- Membrane Separation and Water Treatment Center, Zhejiang University of Technology, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Hangzhou 310014, China E-mail:
| |
Collapse
|
3
|
Narukulla R, Ojha U, Sharma T. Facile one pot green synthesis of –NH2 surface functionalized graphene-polymer nanocomposite: Subsequent utilization as stabilizer in pickering emulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Qiu X, Cui Q, Guo Q, Zhou T, Zhang X, Tian M. Strong, Healable, Stimulus-Responsive Fluorescent Elastomers Based on Assembled Borate Dynamic Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107164. [PMID: 35150079 DOI: 10.1002/smll.202107164] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Self-healing materials integrated with robust mechanical property and fascinating functions synchronously hold great prospects in many applications, but it still remains a grand challenge. Here, a bottom-up assembly method of preparing borate dynamic nanostructures (BDN) with controllable morphologies and interfacial crosslinks is proposed, from which a robust self-healing elastomer is fabricated. The BDN is optimized to construct dense and strong interfacial boronic easter crosslinks, endowing the elastomer with outstanding stretchability (2050%), high strength (17.9 MPa) as well as healing efficiency (77.1%). Moreover, the elastomer also exhibits pH stimulus-responsive fluorescence property and excellent functional repairability, enabling its potential application in intelligent material fields such as information encoding and encryption. This study demonstrates a general approach to produce self-healable functional materials with robust mechanical properties, and defines a rich platform for exploring various functional nanostructured materials.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Qinke Cui
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Quanquan Guo
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Tao Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Ming Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
5
|
Zhang K, Wang Z, Liu Y, Zhao H, Gao C, Wu Y. Cephalopods-inspired Repairable MWCNTs/PDMS Conductive Elastomers for Sensitive Strain Sensor. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2674-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Zhang K, Wang Z, Zhang J, Liu Y, Yan C, Hu T, Gao C, Wu Y. A highly stretchable and room temperature autonomous self-healing supramolecular organosilicon elastomer with hyperbranched structure. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110618] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
A NIR laser induced self-healing PDMS/Gold nanoparticles conductive elastomer for wearable sensor. J Colloid Interface Sci 2021; 599:360-369. [PMID: 33962197 DOI: 10.1016/j.jcis.2021.04.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022]
Abstract
Self-healing conductive elastomers have been widely used in smart electronic devices, such as wearable sensors. However, nano fillers hinder the flow of polymer segments, which make the development of conductive elastomer with rapid repair and high ductility a challenge. In this work, thioctic acid (TA) was grafted onto amino-modified polysiloxane (PDMS-NH2) by dehydration condensation of amino group and carboxyl group. By introducing gold nanoparticles, a dynamic network based on S-Au interaction was constructed. The dynamic gold cross-linking could effectively dissipate the energy exerted by external force and improve the extensibility of conductive elastomer. In addition, S-Au interaction had a good optothermal effect, so that the elastomer rapidly healed under NIR irradiation, and the repair efficiency reached 92%. We further evaluated the performance of the conductive elastomer as a strain sensor. The sample could accurately monitor the bending of human joints and small muscle state changes. This kind of self-healable conductive elastomer based on dynamic S-Au interaction has great potential in the fields of interpersonal interaction and health monitoring.
Collapse
|
8
|
Zhang Y, Wu Y, Li J, Zhang K. Catalyst-free room-temperature self-healing polymer networks based on dynamic covalent quinone methide-secondary amine chemistry. Polym Chem 2021. [DOI: 10.1039/d1py00957e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel type of dynamic covalent polymer network with a catalyst-free room-temperature self-healing ability was developed on a new dynamic covalent chemistry of aza-Michael addition between para-quinone methide and secondary amine.
Collapse
Affiliation(s)
- Yuanxing Zhang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Wu
- Institute of Polymer Chemistry and Physics, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jiayi Li
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- Institute of Polymer Chemistry and Physics, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ke Zhang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Zhang K, Sun J, Song J, Gao C, Wang Z, Song C, Wu Y, Liu Y. Self-Healing Ti 3C 2 MXene/PDMS Supramolecular Elastomers Based on Small Biomolecules Modification for Wearable Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45306-45314. [PMID: 32921045 DOI: 10.1021/acsami.0c13653] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Flexible conductive composites can be used as wearable strain sensors, which are widely used in the fields of new-generation robotics, electronic skin, and human detection. However, how to make conductive composites that simultaneously possess flexibility, stretchability, self-healing, and sensing capability is challenging research. In this work, we innovatively designed and prepared a silicone polymer conductive composite. MXenes and amino poly(dimethylsiloxane) were modified by small biomolecules via an esterification reaction and a Schiff base reaction, respectively. The modified MXenes are uniformly dispersed, which endows the composite with good electrical conductivity. The reversibility of multiple hydrogen bonds and imine bonds in the composite system makes it have ideal tensile properties and high-efficiency self-healing ability without external stimulation. The conductive composite containing 10 wt % A-MXenes showed an elongation of 81%, and its mechanical strength could reach 1.81 MPa. After repair, the tensile properties and the electrical conductivity could be restored to 98.4 and 97.6%, respectively. In addition, the conductive composite is further evaluated for the value of wearable strain sensors. Even after cut-healed processes, the conductive composite can still accurately detect tiny human movements (including speaking, swallowing, and pressing). This kind of self-healing MXene/PDMS elastomers based on the modification of small biomolecules has great potential as wearable strain sensors. This simple preparation method provides guidance for future multifunctional flexible electronic materials.
Collapse
Affiliation(s)
- Kaiming Zhang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiawen Sun
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Jingyao Song
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chuanhui Gao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhe Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chengxin Song
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yumin Wu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuetao Liu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
10
|
Si M, Zhu W, Zhang Y, Barboiu M, Chen J. Fluorodynamers Displaying Tunable Fluorescence on Constitutional Exchanges in Solution and at Solid Film-Solution Interface. Chemistry 2020; 26:10191-10194. [PMID: 32220132 DOI: 10.1002/chem.202000981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 12/18/2022]
Abstract
Dynamic covalent polymers-dynamers-are adaptive materials that offer timely variant adaptive macroscopic organization across extended scales. In the current study, imine exchange reactions and fluorescence transfer can occur at the interfaces between various solutions and solid state dynameric films. The fluorescence quenching upon imine formations for designed fluorogen was successfully demonstrated, and this tunable fluorescence was further used to study the re-composition of a solid film. Moreover, the dynamic covalent films also exhibited responsiveness to competing amines and acid/base conditions, both in solutions and solid film-solution interface. This work can provide more insights into interface dynamic chemistry and holds great potential for further applications in optical and biomedical materials.
Collapse
Affiliation(s)
- Mingran Si
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, P. R. China
| | - Weijia Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, P. R. China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, P. R. China
| | - Mihail Barboiu
- Institut European des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, 34095, France
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, P. R. China
| |
Collapse
|
11
|
Zhang K, Liu Y, Wang Z, Song C, Gao C, Wu Y. A type of self-healable, dissoluble and stretchable organosilicon elastomer for flexible electronic devices. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Zhang Y, Qi Y, Ulrich S, Barboiu M, Ramström O. Dynamic Covalent Polymers for Biomedical Applications. MATERIALS CHEMISTRY FRONTIERS 2020; 4:489-506. [PMID: 33791102 PMCID: PMC8009197 DOI: 10.1039/c9qm00598f] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The rapid development of supramolecular polymer chemistry and constitutional dynamic chemistry over the last decades has made tremendous impact on the emergence of dynamic covalent polymers. These materials are formed through reversible covalent bonds, endowing them with adaptive and responsive features that have resulted in high interest throughout the community. Owing to their intriguing properties, such as self-healing, shape-memory effects, recyclability, degradability, stimuli-responsiveness, etc., the materials have found multiple uses in a wide range of areas. Of special interest is their increasing use for biomedical applications, and many examples have been demonstrated in recent years. These materials have thus been used for the recognition and sensing of biologically active compounds, for the modulation of enzyme activity, for gene delivery, and as materials for cell culture, delivery, and wound-dressing. In this review, some of these endeavors are discussed, highlighting the many advantages and unique properties of dynamic covalent polymers for use in biology and biomedicine.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yunchuan Qi
- Department of Chemistry, University of Massachusetts Lowell, One University Ave. Lowell, MA 01854, USA
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université of Montpellier, ENSCM, Montpellier, France
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, F-34095, Montpellier, France
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave. Lowell, MA 01854, USA
- Department of Chemical and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|
13
|
Debnath S, Kaushal S, Mandal S, Ojha U. Solvent processable and recyclable covalent adaptable organogels based on dynamic trans-esterification chemistry: separation of toluene from azeotropic mixtures. Polym Chem 2020. [DOI: 10.1039/c9py01807g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
New covalent adaptable networks (CANs) possessing processability and recyclability to monomers are desirable as an alternative to traditional plastics to address plastic waste-related issues.
Collapse
Affiliation(s)
- Suman Debnath
- Department of Chemistry
- Rajiv Gandhi Institute of Petroleum Technology
- Amethi
- India
| | - Swaraj Kaushal
- Department of Chemistry
- Rajiv Gandhi Institute of Petroleum Technology
- Amethi
- India
| | - Subhankar Mandal
- Department of Chemistry
- Rajiv Gandhi Institute of Petroleum Technology
- Amethi
- India
| | - Umaprasana Ojha
- Department of Chemistry
- Rajiv Gandhi Institute of Petroleum Technology
- Amethi
- India
| |
Collapse
|
14
|
Love D, Kim K, Domaille DW, Williams O, Stansbury J, Musgrave C, Bowman C. Catalyst-free, aza-Michael polymerization of hydrazides: polymerizability, kinetics, and mechanistic origin of an α-effect. Polym Chem 2019; 10:5790-5804. [PMID: 31749894 PMCID: PMC6865069 DOI: 10.1039/c9py01199d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the powerful nature of the aza-Michael reaction for generating C-N linkages and bioactive moieties, the bis-Michael addition of 1° amines remains ineffective for the synthesis of functional, step-growth polymers due to the drastic reduction in reactivity of the resulting 2° amine mono-addition adduct. In this study, a wide range of commercial hydrazides are shown to effectively undergo the bis-Michael reaction with divinyl sulfone (DVS) and 1,6-hexanediol diacrylate (HDA) under catalyst-free, thermal conditions to afford moderate to high molecular weight polymers with M n = 3.8-34.5 kg mol-1. The hydrazide-Michael reactions exhibit two distinctive, conversion-dependent kinetic regimes that are 2nd-order overall, in contrast to the 3rd-order nature of amines previously reported. The mono-addition rate constant was found to be 37-fold greater than that of the bis-addition at 80 °C for the reaction between benzhydrazide and DVS. A significant majority (12 of 15) of the hydrazide derivatives used here show excellent bis-Michael reactivity and achieve >97% conversions after 5 days. This behavior is consistent with calculations that show minimal variance of electron density on the N-nucleophile among the derivatives studied. Reactivity differences between hydrazides and hexylamine are also explored. Overall, the difference in reactivity between hydrazides and amines is attributed to the adjacent nitrogen atom in hydrazides that acts as an efficient hydrogen-bond donor that facilitates intramolecular proton-transfer following the formation of the zwitterion intermediate. This effect not only activates the Michael acceptor but also coordinates with additional Michael acceptors to form an intermolecular reactant complex.
Collapse
Affiliation(s)
- Dillon Love
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Kangmin Kim
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Dylan W. Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Olivia Williams
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Jeffrey Stansbury
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, USA
- School of Dental Medicine, Craniofacial Biology, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Charles Musgrave
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Christopher Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
15
|
Hydrophobicity enhancement of polyurethanes by attaching fluorinated end blocks via ATRP and correlation between surface properties and self-assembly nature. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|