1
|
Bangay W, Yandrasits M, Hayes W. Understanding the hydrocarbon - PFSA ionomer conductivity gap in hydrogen fuel cells. Phys Chem Chem Phys 2025; 27:8305-8319. [PMID: 40181798 DOI: 10.1039/d5cp00334b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Hydrocarbon ionomers (HCs) have the potential to replace perfluorinated sulfonic acids (PFSAs), which are currently used in electrolyser or fuel cell membranes. To be a truly viable alternative, HCs must have conductivity across the operating range and cell lifetime comparable to PFSAs. Conductivity is an important property of membranes because it affects the energy efficiency of a fuel cell or electrolyser. By examining conductivity as a function of water volume fraction, it becomes evident that HC ionomers have consistently lower conductivity at low relative humidity. To better understand this 'conductivity gap', conductivity was converted to proton diffusivity and analysed using General Effective Media (GEM) theory for the first time. This analysis revealed that all ionomers require similar hydration levels for proton dissociation, and proton diffusion coefficients in the dry polymer are responsible for the conductivity gap. It is suggested that the membrane tortuosity ultimately accounts for the dry membrane's proton diffusivity and low RH conductivity. As the membrane hydrates however, all ionomers exhibit similar diffusion coefficients, indicating that conductivity at high humidity is limited by proton concentration.
Collapse
Affiliation(s)
- William Bangay
- Johnson Matthey Technology Centre, Sonning Common, Reading, UK.
- University of Reading, Reading, UK
| | | | | |
Collapse
|
2
|
Wang A, Breakwell C, Foglia F, Tan R, Lovell L, Wei X, Wong T, Meng N, Li H, Seel A, Sarter M, Smith K, Alvarez-Fernandez A, Furedi M, Guldin S, Britton MM, McKeown NB, Jelfs KE, Song Q. Selective ion transport through hydrated micropores in polymer membranes. Nature 2024; 635:353-358. [PMID: 39506120 PMCID: PMC11560840 DOI: 10.1038/s41586-024-08140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Ion-conducting polymer membranes are essential in many separation processes and electrochemical devices, including electrodialysis1, redox flow batteries2, fuel cells3 and electrolysers4,5. Controlling ion transport and selectivity in these membranes largely hinges on the manipulation of pore size. Although membrane pore structures can be designed in the dry state6, they are redefined upon hydration owing to swelling in electrolyte solutions. Strategies to control pore hydration and a deeper understanding of pore structure evolution are vital for accurate pore size tuning. Here we report polymer membranes containing pendant groups of varying hydrophobicity, strategically positioned near charged groups to regulate their hydration capacity and pore swelling. Modulation of the hydrated micropore size (less than two nanometres) enables direct control over water and ion transport across broad length scales, as quantified by spectroscopic and computational methods. Ion selectivity improves in hydration-restrained pores created by more hydrophobic pendant groups. These highly interconnected ion transport channels, with tuned pore gate sizes, show higher ionic conductivity and orders-of-magnitude lower permeation rates of redox-active species compared with conventional membranes, enabling stable cycling of energy-dense aqueous organic redox flow batteries. This pore size tailoring approach provides a promising avenue to membranes with precisely controlled ionic and molecular transport functions.
Collapse
Affiliation(s)
- Anqi Wang
- Department of Chemical Engineering, Imperial College London, London, UK.
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Charlotte Breakwell
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Fabrizia Foglia
- Department of Chemistry, University College London, London, UK
| | - Rui Tan
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Louie Lovell
- School of Chemistry, University of Birmingham, Birmingham, UK
| | - Xiaochu Wei
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Toby Wong
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Naiqi Meng
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Haodong Li
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Andrew Seel
- ISIS Neutron and Muon Source, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton, UK
- Department of Physics, Royal Holloway University of London, Egham, UK
| | - Mona Sarter
- ISIS Neutron and Muon Source, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton, UK
| | - Keenan Smith
- Department of Chemistry, University College London, London, UK
| | | | - Mate Furedi
- Department of Chemical Engineering, University College London, London, UK
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, London, UK
| | | | - Neil B McKeown
- EaStCHEM, School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Qilei Song
- Department of Chemical Engineering, Imperial College London, London, UK.
| |
Collapse
|
3
|
Jeddi J, Niskanen J, Lessard BH, Sangoro J. Ion transport in polymerized ionic liquids: a comparison of polycation and polyanion systems. Faraday Discuss 2024; 253:426-440. [PMID: 39101858 DOI: 10.1039/d4fd00070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The correlation among chemical structure, mesoscale structure, and ion transport in 1,2,3-triazole-based polymerized ionic liquids (polyILs) featuring comparable polycation and polyanion backbones is investigated by wide-angle X-ray scattering (WAXS), differential scanning calorimetry, and broadband dielectric spectroscopy (BDS). Above the glass transition temperature, Tg, higher ionic conductivity is observed in polycation polyILs compared to their polyanion counterparts, and ion conduction is enhanced by increasing the counterion volume in both polycation or polyanion polyILs. Below Tg, polyanions show lower activation energy associated with ion conduction. However, the validity of the Barton-Nakajima-Namikawa relation indicates that hopping conduction is the dominant charge transport mechanism in all the polyILs studied. While a significant transition from a Vogel-Fulcher-Tammann to Arrhenius type of thermal activation is observed below Tg, the decoupling index, often used to quantify the extent to which segmental dynamics and ion conduction are correlated, remains unaltered for the polyILs studied, suggesting that this index may not be a general parameter to characterize charge transport in polymerized ionic liquids. Furthermore, detailed analyses of the WAXS results indicate that both the mobile ion type and the structure of the pendant groups control mesoscale organization. These findings are discussed within the framework of recent models, which account for the subtle interplay between electrostatic and elastic forces in determining ion transport in polyILs. The findings demonstrate the intricate balance between the chemical structure and interactions in polyILs that determine ion conduction in this class of polymer electrolytes.
Collapse
Affiliation(s)
- Javad Jeddi
- Department of Chemical and Biomolecular Engineering Ohio State University, Columbus, Ohio 43210, USA.
| | - Jukka Niskanen
- Department of Chemical and Metallurgical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada.
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Ave, Ottawa, ON, K1N 6N5, Canada
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
4
|
Hemmasi E, Tohidian M, Makki H. Morphology and Transport Study of Acid-Base Blend Proton Exchange Membranes by Molecular Simulations: Case of Chitosan/Nafion. J Phys Chem B 2023; 127:10624-10635. [PMID: 38037344 PMCID: PMC10726362 DOI: 10.1021/acs.jpcb.3c05332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/28/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Blending a basic polymer (e.g., chitosan) with Nafion can modify some membrane properties in direct methanol fuel cell applications, e.g., controlling methanol crossover, by regulating the morphology of hydrophilic channels. Unraveling the mechanisms by which the channel morphology is modified is essential to formulate design strategies for acid-base blend membrane development. Thus, we use molecular simulations to analyze the morphological features of a blend membrane (at 75/25 chitosan/Nafion wt %), i.e., (i) water/polymer phase organizations, (ii) number and size of water clusters, and (iii) quantitative morphological measures of hydrophilic channels, and compare them to the pure Nafion in a wide range of water contents. It is found that the affinity of water to different hydrophilic groups in the blend membrane can result in more distorted and dispersed hydrophilic phase and fewer bulk water-like features compared to pure Nafion. Also, the width of the hydrophilic network bottleneck, i.e., pore limiting diameter (PLD), is found to be almost five times smaller for the blend membrane compared to Nafion at their maximum water contents. Moreover, by changing the chitosan/Nafion weight ratio from 75/25 to 0/100, we show that as Nafion content increases, all channel morphological characteristics alter monotonically except PLD. This is mainly due to the strong acid-base interactions between Nafion and chitosan, which hinder the monotonic growth of PLD. Interestingly, water and methanol diffusion coefficients are strongly correlated with PLD, suggesting that PLD can be used as a single parameter for tailoring the blending ratio for achieving the desired diffusion properties of acid-base membranes.
Collapse
Affiliation(s)
- Ehsan Hemmasi
- Department
of Polymer and Color Engineering, Amirkabir
University of Technology, 424 Hafez Avenue, Tehran 59163-4311, Iran
| | - Mahdi Tohidian
- Department
of Polymer and Color Engineering, Amirkabir
University of Technology, 424 Hafez Avenue, Tehran 59163-4311, Iran
| | - Hesam Makki
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
5
|
Wickramasinghe S, Hoehn A, Wetthasinghe ST, Lin H, Wang Q, Jakowski J, Rassolov V, Tang C, Garashchuk S. Theoretical Examination of the Hydroxide Transport in Cobaltocenium-Containing Polyelectrolytes. J Phys Chem B 2023; 127:10129-10141. [PMID: 37972315 DOI: 10.1021/acs.jpcb.3c04118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Polymers incorporating cobaltocenium groups have received attention as promising components of anion-exchange membranes (AEMs), exhibiting a good balance of chemical stability and high ionic conductivity. In this work, we analyze the hydroxide diffusion in the presence of cobaltocenium cations in an aqueous environment based on the molecular dynamics of model systems confined in one dimension to mimic the AEM channels. In order to describe the proton hopping mechanism, the forces are obtained from the electronic structure computed at the density-functional tight-binding level. We find that the hydroxide diffusion depends on the channel size, modulation of the electrostatic interactions by the solvation shell, and its rearrangement ability. Hydroxide diffusion proceeds via both the vehicular and structural diffusion mechanisms with the latter playing a larger role at low diffusion coefficients. The highest diffusion coefficient is observed under moderate water densities (around half the density of liquid water) when there are enough water molecules to form the solvation shell, reducing the electrostatic interaction between ions, yet there is enough space for the water rearrangements during the proton hopping. The effects of cobaltocenium separation, orientation, chemical modifications, and the role of nuclear quantum effects are also discussed.
Collapse
Affiliation(s)
- Sachith Wickramasinghe
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alexandria Hoehn
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Shehani T Wetthasinghe
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Huina Lin
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Qi Wang
- Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jacek Jakowski
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Vitaly Rassolov
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chuanbing Tang
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sophya Garashchuk
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
6
|
He M, Guan M, Zhan R, Zhou K, Fu H, Wang X, Zhong F, Ding M, Jia C. Two-Dimensional Materials Applied in Membranes of Redox Flow Battery. Chem Asian J 2023; 18:e202201152. [PMID: 36534005 DOI: 10.1002/asia.202201152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Redox flow batteries (RFBs) are one of the most promising techniques to store and convert green and renewable energy, benefiting from their advantages of high safety, flexible design and long lifespan. Membranes with fast and selective ions transport are required for the advances of RFBs. Remarkably, two-dimensional (2D) materials with high mechanical and chemical stability, strict size exclusion and abundantly modifiable functional groups, have attracted extensive attentions in the applications of energy fields. Herein, the improvements and perspectives of 2D materials working for ionic transportation and sieving in RFBs membranes are presented. The characteristics of various materials and their advantages and disadvantages in the applications of RFBs membranes particularly are focused. This review is expected to provide a guidance for the design of membranes based on 2D materials for RFBs.
Collapse
Affiliation(s)
- Murong He
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Minyuan Guan
- Huzhou Power Supply Company of State Grid Zhejiang Electric Power Company Ltd., Huzhou, 313000, P. R. China
| | - Ruifeng Zhan
- Huzhou Power Supply Company of State Grid Zhejiang Electric Power Company Ltd., Huzhou, 313000, P. R. China.,Huzhou Electric Power Design Institute Company Ltd., Huzhou, 313000, P. R. China
| | - Kaiyun Zhou
- Huzhou Power Supply Company of State Grid Zhejiang Electric Power Company Ltd., Huzhou, 313000, P. R. China
| | - Hu Fu
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Xinan Wang
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Fangfang Zhong
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Mei Ding
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Chuankun Jia
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| |
Collapse
|
7
|
Zhu Z, Paddison SJ. Perspective: Morphology and ion transport in ion-containing polymers from multiscale modeling and simulations. Front Chem 2022; 10:981508. [PMID: 36059884 PMCID: PMC9437359 DOI: 10.3389/fchem.2022.981508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022] Open
Abstract
Ion-containing polymers are soft materials composed of polymeric chains and mobile ions. Over the past several decades they have been the focus of considerable research and development for their use as the electrolyte in energy conversion and storage devices. Recent and significant results obtained from multiscale simulations and modeling for proton exchange membranes (PEMs), anion exchange membranes (AEMs), and polymerized ionic liquids (polyILs) are reviewed. The interplay of morphology and ion transport is emphasized. We discuss the influences of polymer architecture, tethered ionic groups, rigidity of the backbone, solvents, and additives on both morphology and ion transport in terms of specific interactions. Novel design strategies are highlighted including precisely controlling molecular conformations to design highly ordered morphologies; tuning the solvation structure of hydronium or hydroxide ions in hydrated ion exchange membranes; turning negative ion-ion correlations to positive correlations to improve ionic conductivity in polyILs; and balancing the strength of noncovalent interactions. The design of single-ion conductors, well-defined supramolecular architectures with enhanced one-dimensional ion transport, and the understanding of the hierarchy of the specific interactions continue as challenges but promising goals for future research.
Collapse
Affiliation(s)
| | - Stephen J. Paddison
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
8
|
Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes. Nat Commun 2022; 13:3184. [PMID: 35676263 PMCID: PMC9177609 DOI: 10.1038/s41467-022-30943-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 05/23/2022] [Indexed: 02/05/2023] Open
Abstract
Redox flow batteries using aqueous organic-based electrolytes are promising candidates for developing cost-effective grid-scale energy storage devices. However, a significant drawback of these batteries is the cross-mixing of active species through the membrane, which causes battery performance degradation. To overcome this issue, here we report size-selective ion-exchange membranes prepared by sulfonation of a spirobifluorene-based microporous polymer and demonstrate their efficient ion sieving functions in flow batteries. The spirobifluorene unit allows control over the degree of sulfonation to optimize the transport of cations, whilst the microporous structure inhibits the crossover of organic molecules via molecular sieving. Furthermore, the enhanced membrane selectivity mitigates the crossover-induced capacity decay whilst maintaining good ionic conductivity for aqueous electrolyte solution at pH 9, where the redox-active organic molecules show long-term stability. We also prove the boosting effect of the membranes on the energy efficiency and peak power density of the aqueous redox flow battery, which shows stable operation for about 120 h (i.e., 2100 charge-discharge cycles at 100 mA cm−2) in a laboratory-scale cell. Aqueous organic redox flow batteries are promising for grid-scale energy storage, although their practical application is still limited. Here, the authors report highly ion-conductive and selective polymer membranes, which boost the battery’s efficiency and stability, offering cost-effective electricity storage.
Collapse
|
9
|
Paren BA, Nguyen N, Ballance V, Hallinan DT, Kennemur JG, Winey KI. Superionic Li-Ion Transport in a Single-Ion Conducting Polymer Blend Electrolyte. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin A. Paren
- Department of Materials Science & Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Nam Nguyen
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Valerie Ballance
- Department of Materials Science & Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Daniel T. Hallinan
- Department of Chemical and Biomedical Engineering, Florida A&M University−Florida State University (FAMU-FSU) College of Engineering, 2525 Pottsdamer Street, Tallahassee, Florida 32310, United States
| | - Justin G. Kennemur
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Karen I. Winey
- Department of Materials Science & Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Abstract
Ion-containing polymers have continued to be an important research focus for several decades due to their use as an electrolyte in energy storage and conversion devices. Elucidation of connections between the mesoscopic structure and multiscale dynamics of the ions and solvent remains incompletely understood. Coarse-grained modeling provides an efficient approach for exploring the structural and dynamical properties of these soft materials. The unique physicochemical properties of such polymers are of broad interest. In this review, we summarize the current development and understanding of the structure-property relationship of ion-containing polymers and provide insights into the design of such materials determined from coarse-grained modeling and simulations accompanying significant advances in experimental strategies. We specifically concentrate on three types of ion-containing polymers: proton exchange membranes (PEMs), anion exchange membranes (AEMs), and polymerized ionic liquids (polyILs). We posit that insight into the similarities and differences in these materials will lead to guidance in the rational design of high-performance novel materials with improved properties for various power source technologies.
Collapse
Affiliation(s)
- Zhenghao Zhu
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xubo Luo
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Stephen J Paddison
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
11
|
Kumao R, Miyatake K. Sulfonated and Fluorinated Aromatic Terpolymers as Proton Conductive Membranes: Synthesis, Structure, and Properties. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ren Kumao
- Interdisciplinary Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4 Takeda, Kofu, Yamanashi 400-8510
| | - Kenji Miyatake
- Fuel Cell Nanomaterials Center, University of Yamanashi, 6-43 Miyamae, Kofu, Yamanashi 400-0021
- Clean Energy Research Center, University of Yamanashi, 4 Takeda, Kofu, Yamanashi 400-8510
- Department of Applied Chemistry, Waseda University, Tokyo, 169-8555
| |
Collapse
|
12
|
Zelovich T, Tuckerman ME. Controlling Hydronium Diffusivity in Model Proton Exchange Membranes. J Phys Chem Lett 2022; 13:2245-2253. [PMID: 35238561 DOI: 10.1021/acs.jpclett.1c04071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fuel-cell-based proton exchange membranes (PEMs) show great potential as cost-effective and clean energy conversion devices. In our recent work, we found that for the low-hydrated model PEMs with a inhomogeneous water distribution and a sulfonate anionic functional end group (SO3-), the H3O+ reacts with SO3- according to SO3- + H3O+ ↔ SO3H + H2O, indicating that the anions in PEMs become active participants in the hydronium diffusion. In this work, we use fully atomistic ab initio molecular dynamics simulations to elucidate the optimal conditions that would promote the participation of SO3- in the hydronium diffusion mechanism by increasing the H3O+/SO3- reactivity, thus increasing the hydronium diffusivity along the cell. The results presented in this work allow us to suggest a set of design rules for creating novel, highly conductive PEMs operating at high temperatures under a nonuniform water distribution using a linker/anion with a relatively high pKa such as (CH2)2SO3. We expect that the discovery of these key design principles will play an important role in the synthesis of high-performing materials for emerging PEM-based fuel cell technologies.
Collapse
Affiliation(s)
- Tamar Zelovich
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Mark E Tuckerman
- Department of Chemistry, New York University, New York, New York 10003, United States
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, United States
- NYU-ECNU Center for Computational Chemistry, New York University Shanghai, 3663 North Zhongshan Rd, Shanghai 200062, China
| |
Collapse
|
13
|
Wijaya F, Woo S, Lee H, Nugraha AF, Shin D, Bae B. Sulfonated poly(phenylene-co-arylene ether sulfone) multiblock membranes for application in high-performance fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Liu Q, Li X, Zhang S, Wang Z, Chen Y, Zhou S, Wang C, Wu K, Liu J, Mao Q, Jian X. Novel sulfonated N-heterocyclic poly(aryl ether ketone ketone)s with pendant phenyl groups for proton exchange membrane performing enhanced oxidative stability and excellent fuel cell properties. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Liu L, Lu Y, Pu Y, Li N, Hu Z, Chen S. Highly sulfonated carbon nano-onions as an excellent nanofiller for the fabrication of composite proton exchange membranes with enhanced water retention and durability. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Fernandez Bordín SP, Andrada HE, Carreras AC, Castellano G, Schweins R, Cuello GJ, Mondelli C, Galván Josa VM. Water channel structure of alternative perfluorosulfonic acid membranes for fuel cells. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Tellez-Cruz MM, Escorihuela J, Solorza-Feria O, Compañ V. Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges. Polymers (Basel) 2021; 13:3064. [PMID: 34577965 PMCID: PMC8468942 DOI: 10.3390/polym13183064] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
The study of the electrochemical catalyst conversion of renewable electricity and carbon oxides into chemical fuels attracts a great deal of attention by different researchers. The main role of this process is in mitigating the worldwide energy crisis through a closed technological carbon cycle, where chemical fuels, such as hydrogen, are stored and reconverted to electricity via electrochemical reaction processes in fuel cells. The scientific community focuses its efforts on the development of high-performance polymeric membranes together with nanomaterials with high catalytic activity and stability in order to reduce the platinum group metal applied as a cathode to build stacks of proton exchange membrane fuel cells (PEMFCs) to work at low and moderate temperatures. The design of new conductive membranes and nanoparticles (NPs) whose morphology directly affects their catalytic properties is of utmost importance. Nanoparticle morphologies, like cubes, octahedrons, icosahedrons, bipyramids, plates, and polyhedrons, among others, are widely studied for catalysis applications. The recent progress around the high catalytic activity has focused on the stabilizing agents and their potential impact on nanomaterial synthesis to induce changes in the morphology of NPs.
Collapse
Affiliation(s)
- Miriam M. Tellez-Cruz
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, Ciudad de México 07360, Mexico; (M.M.T.-C.); (O.S.-F.)
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Omar Solorza-Feria
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, Ciudad de México 07360, Mexico; (M.M.T.-C.); (O.S.-F.)
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
18
|
Dai Q, Zhao Z, Shi M, Deng C, Zhang H, Li X. Ion conductive membranes for flow batteries: Design and ions transport mechanism. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Wang J, Xu Z, Chen J, Yang X, Ramakrishna S, Liu Y. Mesoscale Simulation on the Hydrated Morphologies of SPEEK Membrane. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jihao Wang
- Beijing Key Laboratory of Advanced Functional Polymer Composites College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Zhiyang Xu
- Beijing Key Laboratory of Advanced Functional Polymer Composites College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Jia Chen
- Beijing Key Laboratory of Advanced Functional Polymer Composites College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xiaozhen Yang
- State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Science Beijing 100190 China
| | - Seeram Ramakrishna
- Nanoscience and Nanotechnology Initiative National University of Singapore Singapore 11576 Singapore
| | - Yong Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
20
|
Kajita T, Noro A, Seki T, Matsushita Y, Nakamura N. Acidity effects of medium fluids on anhydrous proton conductivity of acid-swollen block polymer electrolyte membranes. RSC Adv 2021; 11:19012-19020. [PMID: 35478621 PMCID: PMC9033556 DOI: 10.1039/d1ra01211h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/19/2021] [Indexed: 01/13/2023] Open
Abstract
Proton-conductive polymer electrolyte membranes (PEMs) were prepared by infiltrating sulfuric acid (Sa) or phosphoric acid (Pa) into a polystyrene-b-poly(4-vinylpyridine)-b-polystyrene (S–P–S) triblock copolymer. When the molar ratio of acid to pyridyl groups in S–P–S, i.e., the acid doping level (ADL), is below unity, the P-block/acid phase in the PEMs exhibited a moderately high glass transition temperature (Tg) of ∼140 °C because of consumption of acids for forming the acid–base complexes between the pyridyl groups and the acids, also resulting in almost no free protons in the PEMs; therefore, the PEMs were totally glassy and exhibited almost no anhydrous conductivity. In contrast, when ADL is larger than unity, the Tgs of the phase composed of acid and P blocks were lower than room temperature, due to the excessive molar amount of acid serving as a plasticizer. Such swollen PEMs with excessive amounts of acid releasing free protons were soft and exhibited high conductivities even without humidification. In particular, an S–P–S/Sa membrane with ADL of 4.6 exhibited a very high anhydrous conductivity of 1.4 × 10−1 S cm−1 at 95 °C, which is comparable to that of humidified Nafion membranes. Furthermore, S–P–S/Sa membranes with lower Tgs exhibited higher conductivities than S–P–S/Pa membranes, whereas the temperature dependence of the conductivities for S–P–S/Pa is stronger than that for S–P–S/Sa, suggesting Pa with a lower acidity would not be effectively dissociated into a dihydrogen phosphate anion and a free proton in the PEMs at lower temperatures. Sulfuric acid-swollen block polymer membranes exhibit anhydrous conductivities of ∼0.1 S cm−1 that is higher than those of phosphoric acid-swollen membranes, whereas temperature dependence of conductivities of the latter is stronger than the former.![]()
Collapse
Affiliation(s)
- Takato Kajita
- Department of Molecular & Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Atsushi Noro
- Department of Molecular & Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Takahiro Seki
- Department of Molecular & Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Yushu Matsushita
- Department of Molecular & Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Naoki Nakamura
- FC Material Development Dept., Electrification & Environment Material Engineering Div
- Advanced R&D and Engineering Company
- Higashifuji Technical Center
- TOYOTA Motor Corporation
- Shizuoka
| |
Collapse
|
21
|
Vondrasek B, Wen C, Cheng S, Riffle JS, Lesko JJ. Hydration, Ion Distribution, and Ionic Network Formation in Sulfonated Poly(arylene ether sulfones). Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Britannia Vondrasek
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Chengyuan Wen
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Shengfeng Cheng
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Judy S. Riffle
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - John J. Lesko
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
22
|
Cao L, Wu H, Cao Y, Fan C, Zhao R, He X, Yang P, Shi B, You X, Jiang Z. Weakly Humidity-Dependent Proton-Conducting COF Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2005565. [PMID: 33179394 DOI: 10.1002/adma.202005565] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/18/2020] [Indexed: 05/27/2023]
Abstract
State-of-the-art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient application in fuel cells. Covalent organic frameworks (COFs) with pre-designable and well-defined structures hold promise to cope with the above challenge. However, fabricating defect-free, robust COF membranes proves an extremely difficult task due to the poor processability of COF materials. Herein, a bottom-up approach is developed to synthesize intrinsic proton-conducting COF (IPC-COF) nanosheets (NUS-9) in aqueous solutions via diffusion and solvent co-mediated modulation, enabling a controlled nucleation and in-plane-dominated IPC-COF growth. These nanosheets allow the facile fabrication of IPC-COF membranes. IPC-COF membranes with crystalline, rigid ion nanochannels exhibit a weakly humidity-dependent conductivity over a wide range of humidity (30-98%), 1-2 orders of magnitude higher than that of benchmark PEMs, and a prominent fuel cell performance of 0.93 W cm-2 at 35% RH and 80 °C arising from superior water retention and Grotthuss mechanism-dominated proton conduction.
Collapse
Affiliation(s)
- Li Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300 072, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300 072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, China
| | - Yu Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300 072, China
| | - Chunyang Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300 072, China
| | - Rui Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300 072, China
| | - Xueyi He
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300 072, China
| | - Pengfei Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300 072, China
| | - Benbing Shi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300 072, China
| | - Xinda You
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300 072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300 072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
23
|
|
24
|
Kang S, Park MJ. 100th Anniversary of Macromolecular Science Viewpoint: Block Copolymers with Tethered Acid Groups: Challenges and Opportunities. ACS Macro Lett 2020; 9:1527-1541. [PMID: 35617073 DOI: 10.1021/acsmacrolett.0c00629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Scientific research on advanced polymer electrolytes has led to the emergence of all-solid-state energy storage/transfer systems. Early research began with acid-tethered polymers half a century ago, and research interest has gradually shifted to high-precision polymers with controllable acid functional groups and nanoscale morphologies. Consequently, various self-assembled acid-tethered block polymer morphologies have been produced. Their ion properties are profoundly affected by the multiscale intermolecular interactions in confinements. The creation of hierarchically organized ion/dipole arrangements inside the block copolymer nanostructures has been highlighted as a future method for developing advanced single-ion polymers with decoupled ion dynamics and polymer chain relaxation. Several emerging practical applications of the acid-tethered block copolymers have been explored to draw attention to the challenges and opportunities in developing state-of-the-art electrochemical systems.
Collapse
Affiliation(s)
- Sejong Kang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Korea 790-784
| | - Moon Jeong Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Korea 790-784
| |
Collapse
|
25
|
Pagels MK, Adhikari S, Walgama RC, Singh A, Han J, Shin D, Bae C. One-Pot Synthesis of Proton Exchange Membranes from Anion Exchange Membrane Precursors. ACS Macro Lett 2020; 9:1489-1493. [PMID: 35653668 DOI: 10.1021/acsmacrolett.0c00550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton exchange membranes (PEMs) play a critical role in many electrochemical devices that could solve the shortcomings of current energy storage and conversion systems. Hydrocarbon-based PEMs are an attractive alternative for replacing the state-of-the-art perfluorosulfonic acid PEMs; however, synthetic routes are generally limited to sulfonation of aromatic units (pre- or postpolymerization functionalization). Here we disclose a facile and scalable one-pot synthetic method of converting an alkyl halide functionality to a sulfonate in polymer systems. With this method, sulfonated hydrocarbon PEMs can be conveniently prepared from a precursor polymer of anion exchange membranes which have recently experienced significant advances. Polyphenylene type PEMs (BPSA and mTPSA in this report) were generated in one-pot SN2 reaction of bromoalkyl side chains of polymers followed by oxidation. These PEMs showed excellent proton conductivity with BPSA showing 250 mS/cm in water at 80 °C, nearly 1.5 times higher than that of Nafion 212. Furthermore, the separation of the sulfonic acid group from the rigid backbone with a flexible alkyl chain mitigates excessive water uptake and in-plane swelling ratio of the polymer, despite having a high ion exchange capacity of 2.6 mequiv/g. Oxidative stability was also shown to be superior for hydrocarbon-based PEMs with negligible changes in mass, NMR, and proton conductivity.
Collapse
Affiliation(s)
- Michael K Pagels
- Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Santosh Adhikari
- Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ramali C Walgama
- Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Asheesh Singh
- Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Junyoung Han
- Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Dongwon Shin
- Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Chulsung Bae
- Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
26
|
Peressin N, Adamski M, Holdcroft S. Effect of steric constraints on the physico‐electrochemical properties of sulfonated polyaromatic copolymers. POLYM INT 2020. [DOI: 10.1002/pi.6097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Nicolas Peressin
- Holdcroft Research Group, Department of Chemistry Simon Fraser University Burnaby Canada
| | - Michael Adamski
- Holdcroft Research Group, Department of Chemistry Simon Fraser University Burnaby Canada
| | - Steven Holdcroft
- Holdcroft Research Group, Department of Chemistry Simon Fraser University Burnaby Canada
| |
Collapse
|
27
|
Chen W, Chen M, Zhen D, Li T, Wu X, Tang S, Wan L, Zhang S, He G. SO 42-/SnO 2 Solid Superacid Granular Stacked One-Dimensional Hollow Nanofiber for a Highly Conductive Proton-Exchange Membrane. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40740-40748. [PMID: 32805848 DOI: 10.1021/acsami.0c09122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel sulfated tin oxide solid superacid granular stacked one-dimensional (1D) hollow nanofiber (SO42-/FSnO2) is proposed as a nanofiller in sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) to manipulate a highly conductive proton nanochannel. It has unique microstructures with an open-end hollow nanofibric morphology and grain-stacked single-layer mesoporous fiber wall, which greatly enlarge the specific surface area and aspect ratio. The diverse acid sites, that is, SO42-, Sn-OH Brönsted, and Sn4+ Lewis superacids, provide a high concentration of strong acidic proton carriers on the nanofiber surface and dynamically abundant hydrogen bonds for rapid proton transfer and interfacial interactions with -SO3H groups in the SPPESK along the 1D hollow nanofiber. As a result, long-range orientated ionic clusters are observed in the SO42-/FSnO2 incorporated membrane, leading to simultaneous enhancement of proton conductivity (226.7 mS/cm at 80 °C), mechanical stability (31.4 MPa for the hydrated membrane), fuel permeation resistance, and single-cell performance (936.5 and 147.3 mW/cm2 for H2/O2 and direct methanol fuel cells, respectively). The superior performance, as compared with that of the zero-dimensional nanoparticle-incorporated membrane, Nafion 115, and previously reported SPPESK-based membranes, suggests a great potential of elaborating superstructural 1D hollow nanofillers for highly conductive proton-exchange membranes.
Collapse
Affiliation(s)
- Wanting Chen
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Musen Chen
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Dongxing Zhen
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tiantian Li
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuemei Wu
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuai Tang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lei Wan
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shouhai Zhang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
28
|
Tsen W. Hydrophilic
TiO
2
decorated carbon nanotubes/sulfonated poly(ether ether ketone) composite proton exchange membranes for fuel cells. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wen‐Chin Tsen
- Department of Fashion and DesignLee‐Ming Institute of Technology New Taipei City Taiwan
| |
Collapse
|
29
|
Schibli EM, Stewart JC, Wright AA, Chen B, Holdcroft S, Frisken BJ. The Nanostructure of HMT-PMBI, a Sterically Hindered Ionene. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eric M. Schibli
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Jacob C. Stewart
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Aidan A. Wright
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Binyu Chen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Steven Holdcroft
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Barbara J. Frisken
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
30
|
Adamski M, Skalski TJ, Schibli EM, Killer M, Wu Y, Peressin N, Frisken BJ, Holdcroft S. Molecular branching as a simple approach to improving polymer electrolyte membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117539] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Tan R, Wang A, Malpass-Evans R, Williams R, Zhao EW, Liu T, Ye C, Zhou X, Darwich BP, Fan Z, Turcani L, Jackson E, Chen L, Chong SY, Li T, Jelfs KE, Cooper AI, Brandon NP, Grey CP, McKeown NB, Song Q. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. NATURE MATERIALS 2020; 19:195-202. [PMID: 31792424 DOI: 10.1038/s41563-019-0536-8] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Membranes with fast and selective ion transport are widely used for water purification and devices for energy conversion and storage including fuel cells, redox flow batteries and electrochemical reactors. However, it remains challenging to design cost-effective, easily processed ion-conductive membranes with well-defined pore architectures. Here, we report a new approach to designing membranes with narrow molecular-sized channels and hydrophilic functionality that enable fast transport of salt ions and high size-exclusion selectivity towards small organic molecules. These membranes, based on polymers of intrinsic microporosity containing Tröger's base or amidoxime groups, demonstrate that exquisite control over subnanometre pore structure, the introduction of hydrophilic functional groups and thickness control all play important roles in achieving fast ion transport combined with high molecular selectivity. These membranes enable aqueous organic flow batteries with high energy efficiency and high capacity retention, suggesting their utility for a variety of energy-related devices and water purification processes.
Collapse
Affiliation(s)
- Rui Tan
- Barrer Centre, Department of Chemical Engineering, Imperial College London, London, UK
| | - Anqi Wang
- Barrer Centre, Department of Chemical Engineering, Imperial College London, London, UK
| | | | - Rhodri Williams
- EaStChem School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Evan Wenbo Zhao
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Tao Liu
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, Shanghai, China
| | - Chunchun Ye
- EaStChem School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Xiaoqun Zhou
- Barrer Centre, Department of Chemical Engineering, Imperial College London, London, UK
| | | | - Zhiyu Fan
- Barrer Centre, Department of Chemical Engineering, Imperial College London, London, UK
| | - Lukas Turcani
- Department of Chemistry, Imperial College London, London, UK
| | - Edward Jackson
- Department of Chemistry, Imperial College London, London, UK
| | - Linjiang Chen
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Samantha Y Chong
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
- X-ray Science Division, JCESR, Argonne National Laboratory, Lemont, IL, USA
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, London, UK
| | - Andrew I Cooper
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Nigel P Brandon
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Clare P Grey
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Neil B McKeown
- EaStChem School of Chemistry, University of Edinburgh, Edinburgh, UK.
| | - Qilei Song
- Barrer Centre, Department of Chemical Engineering, Imperial College London, London, UK.
| |
Collapse
|
32
|
Kang NR, Pham TH, Jannasch P. Polyaromatic Perfluorophenylsulfonic Acids with High Radical Resistance and Proton Conductivity. ACS Macro Lett 2019; 8:1247-1251. [PMID: 35651144 DOI: 10.1021/acsmacrolett.9b00615] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report on the straightforward metal-free synthesis of poly(p-terphenyl perfluorophenylsulfonic acid)s by efficient superacid-catalyzed Friedel-Crafts polycondensations of commercially available perfluoroacetophenone and p-terphenyl, followed by sulfonation of the pendant pentafluorophenyl groups via a selective and quantitative thiolation-oxidation procedure. The stiff and well-defined polymer structure with precisely sequenced and highly acidic units induces efficient ionic clustering, restricted water uptake and swelling, excellent resistance against radical attack, and very high proton conductivity. At 120 °C, the conductivity reaches 40 and 232 mS cm-1 at 50 and 90% relative humidity, respectively, which very closely matches the benchmark Nafion NR212 membrane. The properties are further tuned by copolymerizations. Overall, the results demonstrate that these materials possess a very attractive combination of characteristics for use as high-performance proton-exchange membranes for fuel cells and water electrolyzers.
Collapse
Affiliation(s)
- Na Rae Kang
- Polymer & Materials Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Thanh Huong Pham
- Polymer & Materials Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Patric Jannasch
- Polymer & Materials Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
33
|
Clark JA, Santiso EE, Frischknecht AL. Morphology and proton diffusion in a coarse-grained model of sulfonated poly(phenylenes). J Chem Phys 2019; 151:104901. [DOI: 10.1063/1.5116684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Jennifer A. Clark
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Erik E. Santiso
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Amalie L. Frischknecht
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| |
Collapse
|
34
|
Wei H, Tong L, Yu S, Zhang J, Dong Y, Li X, Ding Y. Non-covalently crosslinked anion exchange membranes: Effect of urea hydrogen-bonding group position. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Fong KD, Self J, Diederichsen KM, Wood BM, McCloskey BD, Persson KA. Ion Transport and the True Transference Number in Nonaqueous Polyelectrolyte Solutions for Lithium Ion Batteries. ACS CENTRAL SCIENCE 2019; 5:1250-1260. [PMID: 31403073 PMCID: PMC6661974 DOI: 10.1021/acscentsci.9b00406] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Indexed: 05/14/2023]
Abstract
Nonaqueous polyelectrolyte solutions have been recently proposed as high Li+ transference number electrolytes for lithium ion batteries. However, the atomistic phenomena governing ion diffusion and migration in polyelectrolytes are poorly understood, particularly in nonaqueous solvents. Here, the structural and transport properties of a model polyelectrolyte solution, poly(allyl glycidyl ether-lithium sulfonate) in dimethyl sulfoxide, are studied using all-atom molecular dynamics simulations. We find that the static structural analysis of Li+ ion pairing is insufficient to fully explain the overall conductivity trend, necessitating a dynamic analysis of the diffusion mechanism, in which we observe a shift from largely vehicular transport to more structural diffusion as the Li+ concentration increases. Furthermore, we demonstrate that despite the significantly higher diffusion coefficient of the lithium ion, the negatively charged polyion is responsible for the majority of the solution conductivity at all concentrations, corresponding to Li+ transference numbers much lower than previously estimated experimentally. We quantify the ion-ion correlations unique to polyelectrolyte systems that are responsible for this surprising behavior. These results highlight the need to reconsider the approximations typically made for transport in polyelectrolyte solutions.
Collapse
Affiliation(s)
- Kara D. Fong
- Department
of Chemical and Biomolecular Engineering, Department of Materials Science and Engineering, and Department of Applied
Science and Technology, University of California, Berkeley, California 94720, United States
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Julian Self
- Department
of Chemical and Biomolecular Engineering, Department of Materials Science and Engineering, and Department of Applied
Science and Technology, University of California, Berkeley, California 94720, United States
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Kyle M. Diederichsen
- Department
of Chemical and Biomolecular Engineering, Department of Materials Science and Engineering, and Department of Applied
Science and Technology, University of California, Berkeley, California 94720, United States
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Brandon M. Wood
- Department
of Chemical and Biomolecular Engineering, Department of Materials Science and Engineering, and Department of Applied
Science and Technology, University of California, Berkeley, California 94720, United States
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Bryan D. McCloskey
- Department
of Chemical and Biomolecular Engineering, Department of Materials Science and Engineering, and Department of Applied
Science and Technology, University of California, Berkeley, California 94720, United States
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Kristin A. Persson
- Department
of Chemical and Biomolecular Engineering, Department of Materials Science and Engineering, and Department of Applied
Science and Technology, University of California, Berkeley, California 94720, United States
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|