1
|
Ma K, Uddin N, Jin H, Ullah MW, Shah SWA, Sakrabani R, Zhu D. Lignin-based cryogels for advancing sustainable crop production via enhanced nutrient accessibility and growth efficiency. Int J Biol Macromol 2025; 287:138613. [PMID: 39662576 DOI: 10.1016/j.ijbiomac.2024.138613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/30/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Sustainable lignin-based materials are becoming increasingly valuable in agriculture, where climate change and nutrient deficiencies threaten crop productivity. We developed lignin-derived cryogels using waste biomass to improve soil nutrients, seed germination, water retention, and photosynthetic pigment levels. These cryogels were synthesized with gum Arabic (GA), keratin (K), and N-vinylpyrrolidone at lignin concentrations of 0.02 wt% (LbC1), and 0.1 wt% (LbC2), along with a control (NLC), through low-temperature polymerization at -20 °C. The cryogels exhibited high thermal stability and water retention, exceeding 170 %, due to their network structure. Functional groups like carboxyl and hydroxyl enhanced nutrient assimilation, accelerating germination and plant growth, with keratin providing bioavailable amino acids through microbial degradation. After 5 days, the cryogel treatments significantly improved early germination rates (100 %, 100 %, and 99 % for wheat, maize, and rapeseed, respectively), while boosting chlorophyll (a, b, and total), sugar, and soluble protein levels. Treated plants showed increased leaf numbers, plant height, and root length, with a 98.4 % improvement in water uptake compared to controls, mitigating the effect of soil salinity. LbC1 and LbC2 also notably increased chlorophyll pigments, soluble sugars, and total protein across all crops compared to the NLC. Additionally, the cryogel exhibited a 33 % biodegradation rate after 130 days in soil, confirming their environmental compatibility. In conclusion, the developed lignin-based cryogels represent a sustainable, effective solution to enhance nutrient availability and resilience in agriculture, repurposing industrial lignin waste to address climate-driven challenges in crop production.
Collapse
Affiliation(s)
- Keyu Ma
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Nisar Uddin
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hongmei Jin
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Muhammad Wajid Ullah
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Syed Waqas Ali Shah
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510182, China
| | - Ruben Sakrabani
- Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
2
|
Zhao X, Lyu G, Meng X, Liu Y, Wang Z, Yoo CG. Novel ternary deep eutectic solvent fractionation for effective utilization of willow. BIORESOURCE TECHNOLOGY 2024; 407:131148. [PMID: 39047801 DOI: 10.1016/j.biortech.2024.131148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
A novel ternary deep eutectic solvent (TDES), consisting of zinc chloride, ethylene glycol and alpha hydroxy carboxylic acids (i.e., glycolic acid, citric acid and malic acid), was first proposed to effectively fractionate and convert willow (Salix matsudana cv. Zhuliu) into fermentable sugar. In particular, the zinc chloride/ethylene glycol/malic acid (ZnCl2/EG/MA) TDES system showed remarkable fractionation performance with 91.66 % xylan and 90.12 % lignin removals at 130 °C for 1.5 h, resulting in 96.01 % glucose yield in the subsequent enzymatic hydrolysis stage. Moreover, the regenerated lignin showed regular nanoparticle morphology and good antioxidant properties. Even after four recycling, the TDES showed 70.16 % of delignification and 83.70 % glucose yield with the TDES pretreated willow. Overall, this study demonstrated an effective solvent fractionation approach to maximize the utilization of total lignocellulose under mild conditions.
Collapse
Affiliation(s)
- Xirun Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Gaojin Lyu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - Xia Meng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Yue Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Zhen Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| |
Collapse
|
3
|
Chandna S, Olivares M CA, Baranovskii E, Engelmann G, Böker A, Tzschucke CC, Haag R. Lignin Upconversion by Functionalization and Network Formation. Angew Chem Int Ed Engl 2024; 63:e202313945. [PMID: 37830521 DOI: 10.1002/anie.202313945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
Lignin, a complex and abundant biopolymer derived from plant cell walls, has emerged as a promising feedstock for sustainable material development. Due to the high abundance of phenylpropanoid units, aromatic rings, and hydroxyl groups, lignin is an ideal candidate for being explored in various material applications. Therefore, the demand on lignin valorization for development of value-added products is significantly increasing. This mini-review provides an overview of lignin upconversion, focusing on its functionalization through chemical and enzymatic routes, and its application in lignin-based polymer resins, hydrogels, and nanomaterials. The functionalization of lignin molecules with various chemical groups offers tailored properties and increased compatibility with other materials, expanding its potential applications. Additionally, the formation of lignin-based networks, either through cross-linking or blending with polymers, generates novel materials with improved mechanical, thermal, and barrier properties. However, challenges remain in optimizing functionalization techniques, preserving the innate complexity of lignin, and achieving scalability for industrial implementation. As lignin's potential continues to be unlocked, it is poised to contribute significantly to the shift towards more eco-friendly and resource-efficient industries.
Collapse
Affiliation(s)
- Sanjam Chandna
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Carmen A Olivares M
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Egor Baranovskii
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Gunnar Engelmann
- Fraunhofer-Institut für Angewandte Polymerforschung (IAP), Geiselbergstrasse 69, 14476, Potsdam, Germany
| | - Alexander Böker
- Fraunhofer-Institut für Angewandte Polymerforschung (IAP), Geiselbergstrasse 69, 14476, Potsdam, Germany
| | - C Christoph Tzschucke
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Rainer Haag
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
4
|
Li C, Shen J, Wang J, Bao C, Li B, Liu L, Wang H, Zhang X. Highly compressible and macro-porous hydrogels via the synergy of cryogelation and double-network for efficient removal of Cr(VI). Int J Biol Macromol 2023; 238:124160. [PMID: 36966856 DOI: 10.1016/j.ijbiomac.2023.124160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/02/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Mechanically robust and macro-porous hydrogels are urgently required for the dynamic removal of heavy metals in wastewater purification field. Herein, a novel microfibrillated cellulose/polyethyleneimine hydrogel (MFC/PEI-CD) with high compressibility and macro-porous structures was fabricated via the synergy of cryogelation and double-network for Cr(VI) adsorption from wastewater. MFCs were pre-cross-linked by bis(vinyl sulfonyl)methane (BVSM) and then formed double-network hydrogels with PEIs and glutaraldehyde below freezing. The SEM showed that the MFC/PEI-CD possessed interconnected macropores with an average pore diameter of 52 μm. Mechanical tests indicated a high compressive stress of 116.4 kPa at 80 % strain, which was 4 times higher than the corresponding MFC/PEI with a single-network. The Cr(VI) adsorption performance of MFC/PEI-CDs was systematically investigated under different parameters. Kinetic studies indicated that the adsorption process was well described by the pseudo-second-order model. Isothermal adsorption behaviors accorded well with Langmuir model with the maximum adsorption capacity of 545.1 mg/g, which was superior to most adsorption materials. More importantly, the MFC/PEI-CD was applied to dynamically adsorb Cr(VI) with the treatment volume of 2070 mL/g. Therefore, this work demonstrates that the synergy of cryogelation and double-network is a novel method for preparing macro-porous and robust materials with promising heavy metal removal from wastewater.
Collapse
|
5
|
Lou R, Cao Q, Niu T, Zhang Y, Zhang Y, Wang Z, Zhang X. Metal-Organic-Framework-Mediated Fast Self-Assembly 3D Interconnected Lignin-Based Cryogels in Deep Eutectic Solvent for Supercapacitor Applications. Polymers (Basel) 2023; 15:polym15081824. [PMID: 37111971 PMCID: PMC10141371 DOI: 10.3390/polym15081824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
A cost-effective and sustainable method is successfully developed to produce lignin-based cryogels with a mechanically robust 3D interconnected structure. A choline chloride-lactic acid (ChCl-LA)-based deep eutectic solvent (DES) is used as a cosolvent to promote the synthesis of lignin-resorcinol-formaldehyde (LRF) gels that can self-assemble a robust string-bead-like framework. The molar ratio of LA to ChCl in DES has a significant influence on the gelation time and properties of the ensuing gels. Moreover, it is discovered that doping the metal-organic framework (MOF) during the sol-gel process can greatly accelerate the gelation of lignin. It takes a mere 4 h to complete the LRF gelation process at a DES ratio of 1:5 combined with 5% MOF. This study yields LRF carbon cryogels doped with copper that exhibit 3D interconnected bead-like carbon spheres with a prominent micropore of 1.2 nm. A specific capacitance as high as 185 F g-1 can be obtained for the LRF carbon electrode at a current density of 0.5 A g-1, and it has an excellent long-term cycling stability. This study provides a novel method of synthesizing high-lignin-content carbon cryogels with promising potential for application in the field of energy storage devices.
Collapse
Affiliation(s)
- Rui Lou
- College of Physics and Energy, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qihang Cao
- College of Physics and Energy, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Taoyuan Niu
- College of Physics and Energy, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yiyi Zhang
- College of Physics and Energy, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yanan Zhang
- College of Physics and Energy, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhiwei Wang
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, Guangxi University, Nanning 530004, China
| | - Xiao Zhang
- Voiland School of Chemical Engineering & Bioengineering, Washington State University, Richland, WA 99354, USA
| |
Collapse
|
6
|
Zheng L, Hua H, Zhang Z, Zhu Y, Wang L, Li Y. PVA/ChCl Deep Eutectic Polymer Blends for Transparent Strain Sensors with Antifreeze, Flexible, and Recyclable Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49212-49223. [PMID: 36269597 DOI: 10.1021/acsami.2c15673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wearable elastic electronic devices have attracted tremendous attention due to their monitoring capabilities for human motion detection. In this work, a hydrogen bond acceptor quaternary ammonium salt, choline chloride (ChCl), has been used to fabricate deep eutectic polymer (DEP) blends with polyvinyl alcohol (PVA). The miscibility, molecular interaction, and physical properties of PVA/ChCl DEP blends were investigated systematically. It is demonstrated that the deep eutectic of PVA/ChCl can be obtained by simple solution blending, and the melting points of both PVA and ChCl are reduced respectively due to the strong hydrogen bond between PVA and ChCl. Due to the elasticity of the PVA/ChCl elastomer and the response of ChCl ions to temperature and humidity, the fabricated sensor showed stable and repeatable resistance changes upon strain, temperature, and humidity variations. We hypothesize that the DEP blend system has potential applications in functional composites and the final PVA/ChCl elastomer composites exhibited high transparent, antifreeze, and recyclable capability, which may be promising for applications in soft/flexible devices.
Collapse
Affiliation(s)
- Letian Zheng
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou311121, Zhejiang, People's Republic of China
| | - Huanyao Hua
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou311121, Zhejiang, People's Republic of China
| | - Ziyuan Zhang
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou311121, Zhejiang, People's Republic of China
| | - Yutian Zhu
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou311121, Zhejiang, People's Republic of China
| | - Lian Wang
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou311121, Zhejiang, People's Republic of China
| | - Yongjin Li
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou311121, Zhejiang, People's Republic of China
| |
Collapse
|
7
|
Characterization of Organosolv Lignins and Their Application in the Preparation of Aerogels. MATERIALS 2022; 15:ma15082861. [PMID: 35454554 PMCID: PMC9029481 DOI: 10.3390/ma15082861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023]
Abstract
The production of novel materials and value-added chemicals from lignin has received considerable attention in recent years. Due to its abundant occurrence in nature, there is a growing interest in utilizing lignin as a feedstock for functional materials production, for example aerogels. Much like in the synthesis of phenol-based resins, the vacant ortho positions of the aromatic rings in lignin can crosslink with formaldehyde and form polymeric gels. After drying the hydrogels with supercritical CO2, highly porous aerogels are obtained. Current study focuses on the preparation and thorough parametrization of organosolv lignins from different types of lignocellulosic biomass (aspen, pine, and barley straw) as well as their utilization for the preparation of lignin-5-methylresorcinol-formaldehyde aerogels. The thorough structural characterization of the obtained aerogels was carried out by gas adsorption, IR spectroscopy, and scanning electron microscopy. The obtained lignin-based monolithic mesoporous aerogels had specific surface areas and total pore volumes in the upward ranges of 450 m2/g and 1.4 cm3/g, respectively.
Collapse
|
8
|
Shiraz MG, Absalan G, Tashkhourian J. A comparative study of the oxidation of dopamine in deep eutectic solvents: A potential approach to synthesis polydopamine particles with various shapes, sizes, and compositions. J Appl Polym Sci 2021. [DOI: 10.1002/app.52090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Javad Tashkhourian
- Department of Chemistry, Faculty of Sciences Shiraz University Shiraz Iran
| |
Collapse
|
9
|
Ma Q, Wang L, Zhai H, Ren H. Lignin dissolution model in formic acid-acetic acid-water systems based on lignin chemical structure. Int J Biol Macromol 2021; 182:51-58. [PMID: 33798573 DOI: 10.1016/j.ijbiomac.2021.03.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
The separation of lignin from woody biomass and subsequent conversion into useful products requires a solution to the problem of its solubility. The expanded C9 formula of lignin, along with its atomic and functional groups, was determined by elemental analysis and NMRs spectroscopy. Based on the thus-obtained expanded C9 formula, the cohesion parameters of lignin dispersion (10.8-11.1 cal1/2·cm-3/2), polarity (4.15-4.31 cal1/2·cm-3/2), hydrogen bonding (6.30-7.38 cal1/2·cm-3/2), and solubility (13.2-14.0 cal1/2·cm-3/2) were respectively calculated using atomic and functional group contributions method. We established the relationship between lignin structure and lignin solubility parameters. The dissolution characteristics of wheat straw organic acid lignin, industrial eucalyptus kraft lignin, bamboo kraft lignin, and softwood kraft lignin in formic acid-H2O, acetic acid-H2O, and formic acid-acetic acid-H2O solvent systems were analyzed. The results indicate that the dissolution behavior of lignins follows the solubility parameters theory. We have developed a lignin dissolution model according to the lignin structure. This model obeys the solubility parameter theory, overcomes the limitations of the "like dissolves like" principle in organic acid-water systems, and provides a concise method for the selection of lignin solvent systems and the quantitative determination of their solvent composition.
Collapse
Affiliation(s)
- Qingzhi Ma
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lizhen Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huamin Zhai
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Hao Ren
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
10
|
Roda A, Matias AA, Paiva A, Duarte ARC. Polymer Science and Engineering Using Deep Eutectic Solvents. Polymers (Basel) 2019; 11:polym11050912. [PMID: 31117221 PMCID: PMC6572283 DOI: 10.3390/polym11050912] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
The green and versatile character of deep eutectic solvents (DES) has turned them into significant tools in the development of green and sustainable technologies. For this purpose, their use in polymeric applications has been growing and expanding to new areas of development. The present review aims to summarize the progress in the field of DES applied to polymer science and engineering. It comprises fundamentals studies involving DES and polymers, recent applications of DES in polymer synthesis, extraction and modification, and the early developments on the formulation of DES–polymer products. The combination of DES and polymers is highly promising in the development of new and ‘greener’ materials. Still, there is plenty of room for future research in this field.
Collapse
Affiliation(s)
- Ana Roda
- LAQV, REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.
| | - Ana A Matias
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.
| | - Alexandre Paiva
- LAQV, REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Ana Rita C Duarte
- LAQV, REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|