1
|
Tang J, Chen E, Wang D, Qin W, Fang S, Xu T, Liu J, Tang M, Wang Z. A Fiber-Reinforced Poly(ionic liquid) Solid Electrolyte with Low Flammability and High Conductivity for High-Performance Lithium-Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19682-19691. [PMID: 40116045 DOI: 10.1021/acsami.4c23109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Construction of polymer-based solid electrolytes with both low flammability and high ionic conductivity for lithium-metal batteries is still a great challenge but highly desirable. Herein, we report on a series of fiber-reinforced poly(ionic liquid) solid electrolytes prepared through an in situ copolymerization of ionic liquid monomers (IL) and poly(ethylene glycol) diacrylate (PEGDA) units with different ratios inside a polyacrylonitrile (PAN) fiber membrane. Such PAN/Poly-IL-PEGDA composite electrolytes demonstrate promising low flammability due to the excellent fire-resistant feature of the employed IL units. Moreover, it is remarkable to see that the optimized PAN/Poly-IL-PEGDA-1 electrolyte also exhibits highly dense structure with low thickness (31 μm), high ionic conductivity (0.32 mS cm-1 at 30 °C), and wide electrochemical window (up to 4.8 V). As a result, both LiFePO4//Li and NCM//Li full cells with such an electrolyte exhibit both excellent rate capability and cycling stability. This study provides a simple strategy for preparing composite polymer electrolytes with low flammability and high conductivity for high-performance lithium-metal batteries.
Collapse
Affiliation(s)
- Junyan Tang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - En Chen
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Dehua Wang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Wen Qin
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Siyu Fang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ting Xu
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Junjie Liu
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Mi Tang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zhengbang Wang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
2
|
Alshubramy MA, Alamry KA, Alorfi HS, Ismail SH, Rezki N, Aouad MR, Al-Sodies S, Hussein MA. Room temperature sensing of CO 2 using C3-symmetry pyridinium-based porous ionic polymers with triazine or benzene cores. RSC Adv 2025; 15:3317-3330. [PMID: 39902105 PMCID: PMC11788645 DOI: 10.1039/d4ra07062c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025] Open
Abstract
A new class of ionic polymers tethering triazine (benzene) core hybrids with three dipyridinium as cationic counterparts combined with bromide and/or chloride anions PPyBz-OBr and PPyTri-OCl were successfully prepared via the alkylation of 4,4'-dipyridyl derivatives 4,4'-bp-O with 1,3,5-tris(bromomethyl)benzene BB and/or cyanuric chloride CC. The precursor, 4,4'-bp-O,was synthesized through the condensation of 4-pyridine carboxaldehyde and 4,4'-oxydianiline. The resulting ionic polymers, PPyBz-OBr and PPyTri-OCl, underwent metathetical anion exchange, forming new ionic polymers bearing LiTFSI and KPF6 as anions. Characterization of the synthesized hybrid molecules was performed through FTIR, 1H NMR, and 13C NMR analyses. PXRD and SEM showed semi-crystalline structures and a homogenous distribution of micro-/or nanoparticles. TGA and DTA displayed high thermal stability of the synthesized polymer. The sensing activity of the modified ionic polymers was examined using a quartz crystal nanobalance (QCN) for CO2 detection. The resulting sensor demonstrated the ability to provide precise, selective, and reproducible CO2 measurements.
Collapse
Affiliation(s)
- Maha A Alshubramy
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Hajar S Alorfi
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Sameh H Ismail
- Egypt Nanotechnology Center, Cairo University El-Sheikh Zayed, 6th October Giza Egypt
| | - Nadjet Rezki
- Department of Chemistry, Taibah University 30002 Al-Madina Al-Mounawara Saudi Arabia
| | - Mohamed Reda Aouad
- Department of Chemistry, Taibah University 30002 Al-Madina Al-Mounawara Saudi Arabia
| | - Salsabeel Al-Sodies
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Department of Chemistry, Taibah University 30002 Al-Madina Al-Mounawara Saudi Arabia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| |
Collapse
|
3
|
Lange A, Kapernaum N, Wojnarowska Z, Holtzheimer L, Mies S, Williams V, Gießelmann F, Taubert A. Sulfobetaine ionic liquid crystals based on strong acids: phase behavior and electrochemistry. Phys Chem Chem Phys 2025; 27:844-860. [PMID: 39661016 DOI: 10.1039/d4cp03060e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
A group of new zwitterion based ionic liquid crystals (ILCs) have been synthesized. Depending on the counter anion (mesylate or hydrogen sulfate) the phase behavior of the resulting ILCs is quite different. Mesylate based ILCs show complex phase behavior with multiple phases depending on the alkyl chain length. In contrast, hydrogen sulfate based systems always exhibit Colr phases irrespective of the alkyl chain length. The latter show much larger ILC mesophase windows and are thermally stable up to ca. 200 °C. All ILCs show reasonable ionic conductivities of up to 10-4 S cm-1 at elevated temperatures, making these ILCs candidates for intermediate temperature ionic conductors.
Collapse
Affiliation(s)
- Alyna Lange
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany.
| | - Nadia Kapernaum
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, Germany
| | - Zaneta Wojnarowska
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Lea Holtzheimer
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany.
| | - Stefan Mies
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany.
| | - Vance Williams
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, Canada
| | - Frank Gießelmann
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, Germany
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
4
|
Nguyen TKL, Pham-Truong TN. Recent Advancements in Gel Polymer Electrolytes for Flexible Energy Storage Applications. Polymers (Basel) 2024; 16:2506. [PMID: 39274140 PMCID: PMC11398039 DOI: 10.3390/polym16172506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Since the last decade, the need for deformable electronics exponentially increased, requiring adaptive energy storage systems, especially batteries and supercapacitors. Thus, the conception and elaboration of new deformable electrolytes becomes more crucial than ever. Among diverse materials, gel polymer electrolytes (hydrogels, organogels, and ionogels) remain the most studied thanks to the ability to tune the physicochemical and mechanical properties by changing the nature of the precursors, the type of interactions, and the formulation. Nevertheless, the exploitation of this category of electrolyte as a possible commercial product is still restrained, due to different issues related to the nature of the gels (ionic conductivity, evaporation of filling solvent, toxicity, etc.). Therefore, this review aims to resume different strategies to tailor the properties of the gel polymer electrolytes as well as to provide recent advancements in the field toward the elaboration of deformable batteries and supercapacitors.
Collapse
Affiliation(s)
- Thi Khanh Ly Nguyen
- Laboratory of Physical Chemistry of Polymers and Interfaces (LPPI), CY Cergy Paris Université, F-95000 Cergy, France
| | - Thuan-Nguyen Pham-Truong
- Laboratory of Physical Chemistry of Polymers and Interfaces (LPPI), CY Cergy Paris Université, F-95000 Cergy, France
| |
Collapse
|
5
|
Alshubramy MA, Alam MM, Alamry KA, Asiri AM, Hussein MA, Rahman MM. Ionic Organic Network-based C3-symmetric@Triazine core as a selective Hg +2 sensor. Des Monomers Polym 2024; 27:35-50. [PMID: 38903406 PMCID: PMC11188959 DOI: 10.1080/15685551.2024.2360746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
The C3-symmetry ionic polymer PPyTri has been designed with multi-walled carbon nanotubes (MWCNTs) or graphene nanoplatelets (GNPs) and studied as an ultrasensitive electrochemical sensor for trace Hg(II) detection. The synthesis approach incorporated attaching three pyridinium cationic components with chloride anions to the triazine core. The precursors, BPy, were synthesized using a condensation process involving 4-pyridine carboxaldehyde and focused nicotinic hydrazide. The polymer PPyTri was further modified with either MWCNTs or GNPs. The resulting ionic polymer PPyTri and its fabricated nanocomposites were characterized using infrared (IR), nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and powder X-ray diffraction (XRD). The analysis revealed that both the polymer and its nanocomposites have semi-crystalline structures. The electroactivity of the designed nanocomposites toward Hg + 2 ions revealed that among the nanocomposites and bare copolymer, the glassy carbon electrode (GCE) adapted with the PPyTri GNPs-5% exhibited the greatest current response over a wide range of Hg + 2 concentrations. The nanocomposite-modified electrode presented an excellent sensitivity of 83.33 µAµM - 1 cm - 2, a low detection limit of 0.033 nM, and a linear dynamic range of 0.1 nM to 0.01 mM (R2 = 0.9945).
Collapse
Affiliation(s)
- Maha A. Alshubramy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M. M. Alam
- Department of Chemical Engineering, Z. H. Sikder University of Science and Technology (ZHSUST), Shariatpur, Bangladesh
| | - Khalid A. Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
7
|
Li Q, Yan F, Texter J. Polymerized and Colloidal Ionic Liquids─Syntheses and Applications. Chem Rev 2024; 124:3813-3931. [PMID: 38512224 DOI: 10.1021/acs.chemrev.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The breadth and importance of polymerized ionic liquids (PILs) are steadily expanding, and this review updates advances and trends in syntheses, properties, and applications over the past five to six years. We begin with an historical overview of the genesis and growth of the PIL field as a subset of materials science. The genesis of ionic liquids (ILs) over nano to meso length-scales exhibiting 0D, 1D, 2D, and 3D topologies defines colloidal ionic liquids, CILs, which compose a subclass of PILs and provide a synthetic bridge between IL monomers (ILMs) and micro to macro-scale PIL materials. The second focus of this review addresses design and syntheses of ILMs and their polymerization reactions to yield PILs and PIL-based materials. A burgeoning diversity of ILMs reflects increasing use of nonimidazolium nuclei and an expanding use of step-growth chemistries in synthesizing PIL materials. Radical chain polymerization remains a primary method of making PILs and reflects an increasing use of controlled polymerization methods. Step-growth chemistries used in creating some CILs utilize extensive cross-linking. This cross-linking is enabled by incorporating reactive functionalities in CILs and PILs, and some of these CILs and PILs may be viewed as exotic cross-linking agents. The third part of this update focuses upon some advances in key properties, including molecular weight, thermal properties, rheology, ion transport, self-healing, and stimuli-responsiveness. Glass transitions, critical solution temperatures, and liquidity are key thermal properties that tie to PIL rheology and viscoelasticity. These properties in turn modulate mechanical properties and ion transport, which are foundational in increasing applications of PILs. Cross-linking in gelation and ionogels and reversible step-growth chemistries are essential for self-healing PILs. Stimuli-responsiveness distinguishes PILs from many other classes of polymers, and it emphasizes the importance of segmentally controlling and tuning solvation in CILs and PILs. The fourth part of this review addresses development of applications, and the diverse scope of such applications supports the increasing importance of PILs in materials science. Adhesion applications are supported by ionogel properties, especially cross-linking and solvation tunable interactions with adjacent phases. Antimicrobial and antifouling applications are consequences of the cationic nature of PILs. Similarly, emulsion and dispersion applications rely on tunable solvation of functional groups and on how such groups interact with continuous phases and substrates. Catalysis is another significant application, and this is an historical tie between ILs and PILs. This component also provides a connection to diverse and porous carbon phases templated by PILs that are catalysts or serve as supports for catalysts. Devices, including sensors and actuators, also rely on solvation tuning and stimuli-responsiveness that include photo and electrochemical stimuli. We conclude our view of applications with 3D printing. The largest components of these applications are energy related and include developments for supercapacitors, batteries, fuel cells, and solar cells. We conclude with our vision of how PIL development will evolve over the next decade.
Collapse
Affiliation(s)
- Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Feng Yan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - John Texter
- Strider Research Corporation, Rochester, New York 14610-2246, United States
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
8
|
Gómez-Sánchez G, Olivares-Xometl O, Likhanova NV, Arellanes-Lozada P, Lijanova IV, Díaz-Jiménez V, Guzmán-Lucero D, Arriola-Morales J. Inhibition Mechanism of Some Vinylalkylimidazolium-Based Polymeric Ionic Liquids against Acid Corrosion of API 5L X60 Steel: Electrochemical and Surface Studies. ACS OMEGA 2022; 7:37807-37824. [PMID: 36312349 PMCID: PMC9608421 DOI: 10.1021/acsomega.2c04787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
A corrosion inhibition mechanism of API 5L X60 steel exposed to 1.0 M H2SO4 was proposed from the evaluation of three vinylalkylimidazolium poly(ionic liquids) (PILs), employing electrochemical and surface analysis techniques. The synthesized PILs were classified as mixed-type inhibitors whose surface adsorption was promoted mainly by bromide and imidazolate ions, which along with vinylimidazolium cations exerted a resistive effect driven by a charge transfer process by means of a protective PIL film with maximal efficiency of 85% at 175 ppm; the steel surface displayed less surface damage due to the formation of metal-PIL complex compounds.
Collapse
Affiliation(s)
- Giselle Gómez-Sánchez
- Benemérita
Universidad Autónoma de Puebla, Facultad de Ingeniería
Química, Av. San Claudio y 18 Sur, Ciudad Universitaria, Col. Jardines de
San Manuel, C. P. 72570, Puebla, Puebla, México
| | - Octavio Olivares-Xometl
- Benemérita
Universidad Autónoma de Puebla, Facultad de Ingeniería
Química, Av. San Claudio y 18 Sur, Ciudad Universitaria, Col. Jardines de
San Manuel, C. P. 72570, Puebla, Puebla, México
| | - Natalya V. Likhanova
- Instituto
Mexicano del Petróleo, Gerencia de Materiales y Desarrollo
de Productos Químicos, Eje Central Lázaro Cárdenas No. 152,
Col. San Bartolo Atepehuacan, C. P.
07730, Ciudad de México, CDMX, México
| | - Paulina Arellanes-Lozada
- Benemérita
Universidad Autónoma de Puebla, Facultad de Ingeniería
Química, Av. San Claudio y 18 Sur, Ciudad Universitaria, Col. Jardines de
San Manuel, C. P. 72570, Puebla, Puebla, México
| | - Irina V. Lijanova
- Instituto
Politécnico Nacional, CIITEC, Cerrada
Cecati S/N, Colonia Santa
Catarina, Azcapotzalco, C. P. 02250, Ciudad de México, CDMX, México
| | - Víctor Díaz-Jiménez
- Benemérita
Universidad Autónoma de Puebla, Facultad de Ingeniería
Química, Av. San Claudio y 18 Sur, Ciudad Universitaria, Col. Jardines de
San Manuel, C. P. 72570, Puebla, Puebla, México
| | - Diego Guzmán-Lucero
- Instituto
Mexicano del Petróleo, Gerencia de Materiales y Desarrollo
de Productos Químicos, Eje Central Lázaro Cárdenas No. 152,
Col. San Bartolo Atepehuacan, C. P.
07730, Ciudad de México, CDMX, México
| | - Janette Arriola-Morales
- Benemérita
Universidad Autónoma de Puebla, Facultad de Ingeniería
Química, Av. San Claudio y 18 Sur, Ciudad Universitaria, Col. Jardines de
San Manuel, C. P. 72570, Puebla, Puebla, México
| |
Collapse
|
9
|
Zhang ZK, Ding SP, Ye Z, Xia DL, Xu JT. Thermodynamic understanding the phase behavior of fully quaternized poly(ethylene oxide)-b-poly(4-vinylpyridine) block copolymers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Liu C, Raza F, Qian H, Tian X. Recent advances in poly(ionic liquid)s for biomedical application. Biomater Sci 2022; 10:2524-2539. [PMID: 35411889 DOI: 10.1039/d2bm00046f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Poly(ionic liquid)s (PILs) are polymers containing ions in their side-chain or backbone, and the designability and outstanding physicochemical properties of PILs have attracted widespread attention from researchers. PILs have specific characteristics, including negligible vapor pressure, high thermal and chemical stability, non-flammability, and self-assembly capabilities. PILs can be well combined with advanced analytical instruments and technology and have made outstanding contributions to the development of biomedicine aiding in the continuous advancement of science and technology. Here we reviewed the advances of PILs in the biomedical field in the past five years with a focus on applications in proteomics, drug delivery, and development. This paper aims to engage pharmaceutical and biomedical scientists to full understand PILs and accelerate the progress from laboratory research to industrialization.
Collapse
Affiliation(s)
- Chunxia Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
11
|
Durga G, Kalra P, Kumar Verma V, Wangdi K, Mishra A. Ionic liquids: From a solvent for polymeric reactions to the monomers for poly(ionic liquids). J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116540] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Banerjee P, Pal P, Ghosh A, Mandal TK. Ion transport and relaxation in phosphonium poly(ionic liquid) homo‐ and
co‐polymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Palash Banerjee
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata India
| | - Pulak Pal
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata India
| | - Aswini Ghosh
- School of Physical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata India
| | - Tarun K. Mandal
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata India
| |
Collapse
|
13
|
Cao B, Guo HY, Hao XL, Wu ZH, Wu FG, Yu ZW. Transition Mechanism from Nonlamellar to Well-Ordered Lamellar Phases: Is the Lamellar Liquid-Crystal Phase a Must? J Phys Chem Lett 2021; 12:4484-4489. [PMID: 33956459 DOI: 10.1021/acs.jpclett.1c01146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the self-assembly mechanisms of amphiphilic molecules in solutions and regulating their phase behaviors are of primary significance for their applications. To challenge the reported direct phase transitions from nonlamellar to ordered lamellar phases, the self-assembly and phase behavior of the 1-hexadecyl-3-methylimidazolium chloride aqueous dispersions were studied using a strategy of isothermal incubation after the temperature jump. A disordered lamellar phase (identified as the lamellar liquid-crystal (Lα) phase), serving as an intermediate, was found to bridge the transition from a spherical micellar (M) phase to a lamellar-gel (Lβ) phase. Meanwhile, the nonsynchronicity in the tail and headgroup regions of the ionic liquid surfactant during the transition process was also unveiled, with the former being prior to the latter. The in-depth understanding of the self-assembly mechanisms may help push forward the related applications in the future.
Collapse
Affiliation(s)
- Bobo Cao
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hao-Yue Guo
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xiao-Lei Hao
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhong-Hua Wu
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, P. R. China
| | - Zhi-Wu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
14
|
Zhang ZK, Guo XS, Zhang TY, Wang RY, Du BY, Xu JT. Hierarchical Structures with Double Lower Disorder-to-Order Transition and Closed-Loop Phase Behaviors in Charged Block Copolymers Bearing Long Alkyl Side Groups. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ze-Kun Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao-Shuai Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tian-Yu Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rui-Yang Wang
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Bin-Yang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jun-Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
|
16
|
Niesyto K, Neugebauer D. Synthesis and Characterization of Ionic Graft Copolymers: Introduction and In Vitro Release of Antibacterial Drug by Anion Exchange. Polymers (Basel) 2020; 12:E2159. [PMID: 32971814 PMCID: PMC7570301 DOI: 10.3390/polym12092159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 11/16/2022] Open
Abstract
Amphiphilic graft copolymers based on [2-(methacryloyloxy)ethyl]trimethyl- ammonium chloride (TMAMA) were obtained for the delivery of pharmaceutical ionic drugs, such as p-aminosalicylate (PAS) and clavunate (CLV) anions. The side chains were attached by grafting from a multifunctional macroinitiator via atom transfer radical polymerization (ATRP) to get polymers with different grafting degrees and ionic content. The self-assembling ability, confirmed by determining the critical micelle concentration (CMC) through interfacial tension (IFT) with the use of goniometry, was reduced after ion exchange (CMC twice higher than for chloride anions contained copolymers 0.005-0.026 mg/mL). Similarly, the hydrophilicity level (adjusted by the content of ionic fraction) evaluated by the water contact angle (WCA) of the polymer film surfaces was decreased with the increase of trimethylammonium units (68°-44°) and after introduction of pharmaceutical anions. The exchange of Cl- onto PAS- and CLV- in the polymer matrix was yielded at 31%-64% and 79%-100%, respectively. The exchange onto phosphate anions to release the drug was carried out (PAS: 20%-42%, 3.1-8.8 μg/mL; CLV: 25%-73%, 11-31 μg/mL from 1 mg of drug conjugates). Because of the bacteriostatic activity of PAS and the support of the action of the antibiotics by CLV, the designed water-soluble systems could be alternatives for the treatment of bacterial infections, including pneumonia and tuberculosis.
Collapse
Affiliation(s)
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
17
|
Huang Z, Yi M, Liu Y, Qi P, Song A, Hao J. Magnetic polymerizable surfactants: thermotropic liquid crystal behaviors and construction of nanostructured films. NEW J CHEM 2020. [DOI: 10.1039/d0nj03029e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two polymerizable surfactants, 3-undecylene-1-vinylimidazolium bromide (C11VIMBr) and 3-dodecyl-1-vinylimidazolium bromide (C12VIMBr), were chosen to prepare magnetic surfactant monomers by introducing Mn2+, Gd3+ and Ho3+.
Collapse
Affiliation(s)
- Zhaohui Huang
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Mengjiao Yi
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Yihan Liu
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Ping Qi
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| |
Collapse
|
18
|
O'Harra KE, Kammakakam I, Bara JE, Jackson EM. Understanding the effects of backbone chemistry and anion type on the structure and thermal behaviors of imidazolium polyimide‐ionenes. POLYM INT 2019. [DOI: 10.1002/pi.5825] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kathryn E O'Harra
- Department of Chemical and Biological Engineering University of Alabama Tuscaloosa AL USA
| | - Irshad Kammakakam
- Department of Chemical and Biological Engineering University of Alabama Tuscaloosa AL USA
| | - Jason E Bara
- Department of Chemical and Biological Engineering University of Alabama Tuscaloosa AL USA
| | | |
Collapse
|