1
|
Nizam M, Çakır Çanak T, Serhatlı İE. Fabrication of Fluorine and Nitrogen-Based Flame Retardants Containing Rigid Polyurethane Foam with Improved Hydrophobicity and Flame Retardancy. ACS OMEGA 2025; 10:17847-17858. [PMID: 40352539 PMCID: PMC12059898 DOI: 10.1021/acsomega.5c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 05/14/2025]
Abstract
In this work, a novel flame retardant containing fluorine and nitrogen was synthesized by using a copper-catalyzed azide-alkyne cycloaddition reaction, resulting in a hydroxyl-terminated compound with a triazole structure. This flame retardant was added to rigid polyurethane foam (RPUF) formulations in varying percentages (5, 10, and 15%) in order to chemically bond to isocyanates in the foam. Modified RPUF samples were analyzed for structural properties (FTIR), flammability (cone calorimetry, LOI, TGA), thermal conductivity, morphology (SEM), mechanical properties, and hydrophobicity. The results indicated significant improvements in flame retardancy with higher LOI values and lower peak heat release rates. The flame retardant chemically bonded to the foam, maintaining its mechanical integrity and thermal insulation and increasing hydrophobicity due to its fluorine content. This study highlights the potential of fluorine- and nitrogen-containing flame retardants for future fire-resistant materials.
Collapse
Affiliation(s)
- Merve Nizam
- Department of Polymer Science and Technology, Institute of Science and Technology, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Tuba Çakır Çanak
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | | |
Collapse
|
2
|
Van Guyse JFR, Abbasi S, Toh K, Nagorna Z, Li J, Dirisala A, Quader S, Uchida S, Kataoka K. Facile Generation of Heterotelechelic Poly(2-Oxazoline)s Towards Accelerated Exploration of Poly(2-Oxazoline)-Based Nanomedicine. Angew Chem Int Ed Engl 2024; 63:e202404972. [PMID: 38651732 DOI: 10.1002/anie.202404972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Controlling the end-groups of biocompatible polymers is crucial for enabling polymer-based therapeutics and nanomedicine. Typically, end-group diversification is a challenging and time-consuming endeavor, especially for polymers prepared via ionic polymerization mechanisms with limited functional group tolerance. In this study, we present a facile end-group diversification approach for poly(2-oxazoline)s (POx), enabling quick and reliable production of heterotelechelic polymers to facilitate POxylation. The approach relies on the careful tuning of reaction parameters to establish differential reactivity of a pentafluorobenzyl initiator fragment and the living oxazolinium chain-end, allowing the selective introduction of N-, S-, O-nucleophiles via the termination of the polymerization, and a consecutive nucleophilic para-fluoro substitution. The value of this approach for the accelerated development of nanomedicine is demonstrated through the synthesis of well-defined lipid-polymer conjugates and POx-polypeptide block-copolymers, which are well-suited for drug and gene delivery. Furthermore, we investigated the application of a lipid-POx conjugate for the formulation and delivery of mRNA-loaded lipid nanoparticles for immunization against the SARS-COV-2 virus, underscoring the value of POx as a biocompatible polymer platform.
Collapse
Affiliation(s)
- Joachim F R Van Guyse
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Saed Abbasi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Kazuko Toh
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Zlata Nagorna
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Junjie Li
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
| | - Anjaneyulu Dirisala
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Satoshi Uchida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Department of Medical, Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 606-0823, Kyoto, Japan
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 113-8510, Tokyo, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| |
Collapse
|
3
|
Blázquez-Martín A, Bonardd S, Verde-Sesto E, Arbe A, Pomposo JA. Trimethylsilanol Cleaves Stable Azaylides As Revealed by Unfolding of Robust "Staudinger" Single-Chain Nanoparticles. ACS POLYMERS AU 2024; 4:140-148. [PMID: 38618005 PMCID: PMC11010256 DOI: 10.1021/acspolymersau.3c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 04/16/2024]
Abstract
Herein, we disclose a unique and selective reagent for the cleavage of stable azaylides prepared by the nonhydrolysis Staudinger reaction, enabling the on-demand unfolding of robust single-chain nanoparticles (SCNPs). SCNPs with promising use in catalysis, nanomedicine, and sensing are obtained through intrachain folding of discrete synthetic polymer chains. The unfolding of SCNPs involving reversible interactions triggered by a variety of external stimuli (e.g., pH, temperature, light, and redox potential) or substances (e.g., competitive reagents, solvents, and anions) is well known. Conversely, methods for the unfolding (i.e., intrachain disassembly) of SCNPs with stronger covalent interactions are scarce. We show that trimethylsilanol (Me3SiOH) triggers the efficient unfolding of robust "Staudinger" SCNPs with stable azaylide (-N=P-) moieties as intrachain cross-linking units showing exceptional stability toward water, air, and CS2, a standard reagent for azaylides. As a consequence, Me3SiOH arises as a rare, exceptional, and valuable reagent for the cleavage of stable azaylides prepared by the nonhydrolysis Staudinger reaction.
Collapse
Affiliation(s)
- Agustín Blázquez-Martín
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
| | - Sebastián Bonardd
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología,University of the Basque
Country (UPV/EHU), P°
Manuel Lardizabal 3, E-20800 Donostia, Spain
| | - Ester Verde-Sesto
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
- IKERBASQUE
− Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| | - Arantxa Arbe
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
| | - José A. Pomposo
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología,University of the Basque
Country (UPV/EHU), P°
Manuel Lardizabal 3, E-20800 Donostia, Spain
- IKERBASQUE
− Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| |
Collapse
|
4
|
Bosson K, Marcasuzaa P, Bousquet A, Tovar GE, Atanasov V, Billon L. PentaFluoroStyrene-based block copolymers controlled self-assembly pattern: A platform paving the way to functional block copolymers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Nagane SS, Kuhire SS, Ichake AB, Talanikar AA, Lochab B, Wadgaonkar PP. Synthesis, Characterization and UV‐Crosslinking of Aromatic (Co)polycarbonates Bearing Pendant Azido Groups. ChemistrySelect 2022. [DOI: 10.1002/slct.202201020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Samadhan S. Nagane
- Polymers and Advanced Materials Laboratory Polymer Science and Engineering Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Sachin S. Kuhire
- Polymers and Advanced Materials Laboratory Polymer Science and Engineering Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Amol B. Ichake
- Polymers and Advanced Materials Laboratory Polymer Science and Engineering Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Aniket A. Talanikar
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Bimlesh Lochab
- Materials Chemistry Laboratory Department of Chemistry School of Natural Sciences Shiv Nadar University Gautam Buddha Nagar Greater Noida Uttar Pradesh 201314 India
| | - Prakash P. Wadgaonkar
- Polymers and Advanced Materials Laboratory Polymer Science and Engineering Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| |
Collapse
|
6
|
Wang K, Gladysz JA. Azide- and Fluorine-Containing Polystyrenes as Potential ″Phosphine Sponges″ Based upon Staudinger Reactions: Application to the Phase Transfer Activation of Grubbs’ Catalyst. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katherine Wang
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - John A. Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| |
Collapse
|
7
|
Li Y, Bakar RA, Roth PJ. Photochemistry of Azide‐functional Polymers: Soluble Sulfoximine Polymers through Selective Nitrene–Sulfoxide Addition. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuman Li
- Department of Chemistry, School of Chemistry and Chemical Engineering University of Surrey Guildford Surrey GU2 7XH United Kingdom
| | - Rohani Abu Bakar
- Department of Physics University of Surrey Guildford Surrey GU2 7XH UK
| | - Peter J. Roth
- Department of Chemistry, School of Chemistry and Chemical Engineering University of Surrey Guildford Surrey GU2 7XH United Kingdom
| |
Collapse
|
8
|
Ozukanar O, Cakmakci E, Daglar O, Durmaz H, Kumbaraci V. A double‐click strategy for the synthesis of P and N‐containing hydrolytically stable reactive flame retardant for photocurable networks. J Appl Polym Sci 2022. [DOI: 10.1002/app.52837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ozge Ozukanar
- Department of Chemistry Istanbul Technical University Istanbul Turkey
| | - Emrah Cakmakci
- Department of Chemistry Marmara University Istanbul Turkey
| | - Ozgun Daglar
- Department of Chemistry Istanbul Technical University Istanbul Turkey
| | - Hakan Durmaz
- Department of Chemistry Istanbul Technical University Istanbul Turkey
| | - Volkan Kumbaraci
- Department of Chemistry Istanbul Technical University Istanbul Turkey
| |
Collapse
|
9
|
Abu Bakar R, Li Y, Hewitson OP, Roth PJ, Keddie JL. Azide Photochemistry in Acrylic Copolymers for Ultraviolet Cross-Linkable Pressure-Sensitive Adhesives: Optimization, Debonding-on-Demand, and Chemical Modification. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30216-30227. [PMID: 35737668 PMCID: PMC9264322 DOI: 10.1021/acsami.2c07385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Pressure-sensitive adhesives (PSAs) are usually made from viscoelastic, high-molecular-weight copolymers, which are fine-tuned by adjusting the comonomer ratios, molecular weights, and cross-link densities to optimize the adhesion properties for the desired end-use. To create a lightly cross-linked network, an ultraviolet (UV) photoinitiator can be incorporated. Here, we present the first use of perfluorophenylazide chemistry to control precisely a polyacrylate network for application as a PSA. Upon UV irradiation, the highly reactive nitrene from the azide moiety reacts with nearby molecules through a C-H insertion reaction, resulting in cross-linking via covalent bonding. This approach offers three benefits: (1) a means to optimize adhesive properties without the addition of an external photoinitiator; (2) the ability to switch off the tack adhesion on demand via a high cross-linking density; and (3) a platform for additional chemical modification. A series of poly(n-butyl acrylate-co-2,3,4,5,6-pentafluorobenzyl acrylate) or poly(PFBA-co-BA) copolymers were synthesized and modified post-polymerization into the photo-reactive poly(n-butyl acrylate-co-4-azido-2,3,5,6-tetrafluorobenzyl acrylate) [azide-modified poly(PFBA-co-BA)] with various molar contents. When cast into films, the azide-modified copolymers with a high azide content achieved a very high shear resistance after UV irradiation, whereas the tack and peel adhesion decreased strongly with the increase in azide content, indicating that excessive cross-linking occurred. These materials are thus photo-switchable. However, in the low range of azide content, an optimum probe tack adhesion energy was obtained in films with a 0.3 mol % azide content, where a long stress plateau (indicating good fibrillation) with a high plateau stress was observed. An optimum peel adhesion strength was achieved with 0.5 mol % azide. Thus, the adhesion was finely controlled by the degree of cross-linking of the PSA, as determined by the azide content of the copolymer chain. Finally, as a demonstration of the versatility and advantages of the material platform, we show an azide-aldehyde-amine multicomponent modification of the azide copolymer to make a dye-functionalized film that retains its adhesive properties. This first demonstration of using azide functionality has enormous potential for functional PSA design.
Collapse
Affiliation(s)
- Rohani Abu Bakar
- Department
of Physics, University of Surrey, Guildford, Surrey GU2
7XH, U.K.
- Malaysian
Rubber Board, Kuala Lumpur 50450, Malaysia
| | - Yuman Li
- Department
of Chemistry, University of Surrey, Guildford, Surrey GU2
7XH, U.K.
| | - Oliver P. Hewitson
- Department
of Chemistry, University of Surrey, Guildford, Surrey GU2
7XH, U.K.
| | - Peter J. Roth
- Department
of Chemistry, University of Surrey, Guildford, Surrey GU2
7XH, U.K.
| | - Joseph L. Keddie
- Department
of Physics, University of Surrey, Guildford, Surrey GU2
7XH, U.K.
| |
Collapse
|
10
|
Fischer T, Tenbusch J, Möller M, Singh S. A facile method for grafting functional hydrogel films on PTFE, PVDF, and TPX polymers. SOFT MATTER 2022; 18:4315-4324. [PMID: 35621021 DOI: 10.1039/d2sm00313a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The use of polymeric materials in biomedical applications requires a judicious control of surface properties as they are directly related to cellular interactions and biocompatibility. The most desired chemical surface properties include hydrophilicity and the presence of functional groups for surface modification. In this work, we describe a method to graft a highly stable, ultra-thin, amine-functional hydrogel layer onto highly inert surfaces of poly(tetrafluoroethylene) (PTFE), poly(vinylidene fluoride) (PVDF), and poly(4-methyl-1-pentene) (PMP or TPX). Covalent grafting is realized with hydrophilic poly(vinylamine-co-acetamide)s by C-H insertion crosslinking (CHic) chemistry initiated by UV light. These polyvinylamides carry tetrafluorophenyl azide groups as photo or thermo activated binding sites and contain further free amine groups, which can be used to bind peptides such as biological ligands, polysaccharides, or other hydrogel layers. The covalently bound surface layers resist intensive Soxhlet extraction confirming the stability of the coating. Fluorescent staining verified the accessibility of free primary amine groups, which can be used for the functionalization of the surface with bioactive molecules. The coating demonstrates hydrophobic wetting behavior when conditioned in air and hydrophilic wetting behavior when conditioned in water showing the presence of loosely crosslinked polymer chains that can re-orient. We believe that the reported application of CHic for the surface modification of fluorinated polymers like PTFE and PVDF as well as TPX can form the basis for advanced biocompatible and biofunctional surface engineering.
Collapse
Affiliation(s)
- Thorsten Fischer
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Jan Tenbusch
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Martin Möller
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Smriti Singh
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056 Aachen, Germany
- Max-Planck-Institut für medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany.
| |
Collapse
|
11
|
Li Z, Zhang H, Theato P, Bräse S. Poly(pentafluorobenzyl 2‐ylidene‐acetate): Polymerization and Post‐Polymerization Modification. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zengwen Li
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology (KIT) Engesser Str. 18 Karlsruhe D‐76131 Germany
- Institute of Biological and Chemical Systems (IBCS‐FMS) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen D‐76344 Germany
| | - Hongxin Zhang
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology (KIT) Engesser Str. 18 Karlsruhe D‐76131 Germany
| | - Patrick Theato
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology (KIT) Engesser Str. 18 Karlsruhe D‐76131 Germany
- Soft Matter Synthesis Laboratory Institute for Biological Interfaces III Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen D‐76344 Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems (IBCS‐FMS) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen D‐76344 Germany
| |
Collapse
|
12
|
Sun J, Hong YL, Wang C, Tan ZW, Liu CM. Main-chain/Side-chain type Phosphine Oxide-Containing Reactive Polymers Derived from same Monomer: Controllable RAFT Polymerisation and ring-opening Polycondensation. Polym Chem 2022. [DOI: 10.1039/d2py00006g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports the synthesis and selective polymerisations of an epoxy-rich phosphine oxide-containing styrenic monomer, namely 4-vinylbenzyl-bis((oxiran-2-ylmethoxy)methyl) phosphine oxide (VBzBOPO). The styryl and epoxy functionalities could be polymerized independently through...
Collapse
|
13
|
Playing construction with the monomer toy box for the synthesis of multi‐stimuli responsive copolymers by reversible deactivation radical polymerization protocols. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Heiss TK, Dorn RS, Prescher JA. Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chem Rev 2021; 121:6802-6849. [PMID: 34101453 PMCID: PMC10064493 DOI: 10.1021/acs.chemrev.1c00014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal phosphines were introduced in the context of the Staudinger ligation over 20 years ago. Since that time, phosphine probes have been used in myriad applications to tag azide-functionalized biomolecules. The Staudinger ligation also paved the way for the development of other phosphorus-based chemistries, many of which are widely employed in biological experiments. Several reviews have highlighted early achievements in the design and application of bioorthogonal phosphines. This review summarizes more recent advances in the field. We discuss innovations in classic Staudinger-like transformations that have enabled new biological pursuits. We also highlight relative newcomers to the bioorthogonal stage, including the cyclopropenone-phosphine ligation and the phospha-Michael reaction. The review concludes with chemoselective reactions involving phosphite and phosphonite ligations. For each transformation, we describe the overall mechanism and scope. We also showcase efforts to fine-tune the reagents for specific functions. We further describe recent applications of the chemistries in biological settings. Collectively, these examples underscore the versatility and breadth of bioorthogonal phosphine reagents.
Collapse
|
15
|
Synthesis, crystal structure, spectroscopic and photophysical studies of novel fluorinated quinazoline derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Click chemistry strategies for the accelerated synthesis of functional macromolecules. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210126] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Li Y, Busatto N, Roth PJ. Perfluorophenyl Azides: Photo, Staudinger, and Multicomponent Postpolymerization Reactions on Homopolymers and PISA-Made Nanoparticles. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yuman Li
- Department of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Nicolas Busatto
- Department of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Peter J. Roth
- Department of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| |
Collapse
|
18
|
Du Y, Zeng Q, Yuan L, He L. Post-polymerization modification based on reactive fluorinated polymers reaction. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1903328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yiying Du
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiugui Zeng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Yuan
- Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Materials Science and Engineering, Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, China
| | - Lirong He
- Polymer Research Insititute, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Kwon JH, Kim J, Kim KT. Photo-crosslinked polymer cubosomes as a recyclable nanoreactor in organic solvents. Polym Chem 2021. [DOI: 10.1039/d1py00115a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Photo-crosslinked polymer cubosomes can work as robust nanoreactor under organic solvent condition without structural degradation.
Collapse
Affiliation(s)
- Jun Ho Kwon
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| | - Jiwon Kim
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| | - Kyoung Taek Kim
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| |
Collapse
|
20
|
Guerre M, Lopez G, Améduri B, Semsarilar M, Ladmiral V. Solution self-assembly of fluorinated polymers, an overview. Polym Chem 2021. [DOI: 10.1039/d1py00221j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The incorporation of fluorinated moieties into a polymer can confer unique properties and often lead in solution to original morphologies endowed with rare properties.
Collapse
Affiliation(s)
- Marc Guerre
- Laboratoire des IMRCP
- Université de Toulouse
- CNRS UMR 5623
- Université Paul Sabatier
- 31062 Toulouse Cedex 9
| | - Gérald Lopez
- ICGM
- Univ Montpellier-CNRS-ENSCM
- Montpellier
- France
| | | | | | | |
Collapse
|
21
|
François F, Nicolas C, Forcher G, Fontaine L, Montembault V. Poly(norbornenyl azlactone) as a versatile platform for sequential double click postpolymerization modification. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Zhao T, Beyer VP, Becer CR. Fluorinated Polymers via Para-Fluoro-Thiol and Thiol-Bromo Click Step Growth Polymerization. Macromol Rapid Commun 2020; 41:e2000409. [PMID: 32989854 DOI: 10.1002/marc.202000409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/31/2020] [Indexed: 11/06/2022]
Abstract
Click reactions are utilized widely to modify chain ends and side groups of polymers while click polymerizations based on step-growth polymerization of bifunctional monomers have recently attracted increased attention of polymer chemists. Herein, the combination of two highly efficient click reactions, namely para-fluoro-thiol click and thiol-bromo substitution reactions, is demonstrated to form fluorinated polymers with tuned hydrophobicity owing to the nature of the dithiol linker compound. The key compound in this study is 2,3,4,5,6-pentafluoro benzyl bromide that provides the combination of thiol click reactions. The thiols used here are 4,4-thiobisbenzenthiol, 2,2'-(ethylenedioxy) diethanethiol, and 1,2-ethanedithiol that allow tuning of the properties of obtained polymers. The step-growth click reaction conditions are optimized by screening the effect of reaction temperature, base, solvent, and stochiometric ratio of the compounds. Thermal properties and hydrophobicity of synthesized polymers are determined via water contact angle, thermogravimetric analysis and differential scanning calorimetry measurements, showing thermal stability up to 300 °C, glass transition temperatures ranging from -25 to 82 °C and water contact angles ranging from 55 to 90 °C.
Collapse
Affiliation(s)
| | - Valentin P Beyer
- University of Warwick, Coventry, CV4 7AL, UK.,School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | | |
Collapse
|
23
|
Han S, Gu Y, Ma M, Chen M. Light-intensity switch enabled nonsynchronous growth of fluorinated raspberry-like nanoparticles. Chem Sci 2020; 11:10431-10436. [PMID: 34123183 PMCID: PMC8162262 DOI: 10.1039/d0sc04141f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/10/2020] [Indexed: 01/24/2023] Open
Abstract
Raspberry-like (RB) nanoparticles hold potential for diverse applications due to their hierarchical morphology. Here we developed a novel tandem synthetic approach of nonsynchronous growth based on photo-mediated reversible-deactivation radical polymerization, enabling simple, efficient and bottom-up synthesis of RB nanoparticles of uniform sizes at quantitative conversions of fluorinated monomers. Chain transfer agents of different chain lengths, concentrations and chemical compositions were varied to tune the diameter of RB particles. Importantly, fluorinated RB nanoparticles obtained with this method allow facile post modifications via both covalent bond formation and intermolecular physical interactions without disrupting the RB morphology. The facile nature of this method and versatility of the obtained fluorinated RB materials open new opportunities for the development of functional materials using nanoparticles.
Collapse
Affiliation(s)
- Shantao Han
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200433 China http://polymaolab.com/
| | - Yu Gu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200433 China http://polymaolab.com/
| | - Mingyu Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200433 China http://polymaolab.com/
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200433 China http://polymaolab.com/
| |
Collapse
|
24
|
Daglar O, Luleburgaz S, Baysak E, Gunay US, Hizal G, Tunca U, Durmaz H. Nucleophilic Thiol-yne reaction in Macromolecular Engineering: From synthesis to applications. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109926] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Ren J, Liu H, Zhang X, Hu Y, Zhou G, Masuda T. Amide transformation as an efficient postpolymerization modification approach for the synthesis of functional polyacetylenes. Polym Chem 2020. [DOI: 10.1039/d0py00398k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modification of a precursor polyacetylene with various amines and alcohols through amide transformation gives access to a series of functional polymers showing nonlinear optical, luminescence, enhanced surface energy, and redox active properties.
Collapse
Affiliation(s)
- Juntao Ren
- Key Laboratory of Synthetic Rubber
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Heng Liu
- Key Laboratory of Synthetic Rubber
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Xuequan Zhang
- Key Laboratory of Synthetic Rubber
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Yanming Hu
- Division of Energy Materials
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Guangyuan Zhou
- Division of Energy Materials
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Toshio Masuda
- College of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
26
|
Busatto N, Keddie JL, Roth PJ. Sphere-to-worm morphological transitions and size changes through thiol–para-fluoro core modification of PISA-made nano-objects. Polym Chem 2020. [DOI: 10.1039/c9py01585j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spherical diblock copolymer nanoparticles became larger spheres, unimers, or worm-shaped particles when functionalised via thiol–para-fluoro substitution in the core.
Collapse
Affiliation(s)
| | | | - Peter J. Roth
- Department of Chemistry
- University of Surrey
- Guildford
- UK
| |
Collapse
|
27
|
Abstract
The visible light-trigged para-fluoro-thiol ligation is demonstrated for first time by using the photogeneration of a superbase DBU.
Collapse
Affiliation(s)
- Johanna Engelke
- School of Chemistry and Physics
- Queensland University of Technology
- Brisbane
- Australia
- Centre for Materials Science
| | - Vinh X. Truong
- School of Chemistry and Physics
- Queensland University of Technology
- Brisbane
- Australia
- Centre for Materials Science
| |
Collapse
|