1
|
Gao Y, Peng W, Wei JA, Guo D, Zhang Y, Yu Q, Wang C, Wang L. Synthesis of High-Performance Colorless Polyimides with Asymmetric Diamine: Application in Flexible Electronic Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48005-48015. [PMID: 39191511 DOI: 10.1021/acsami.4c09667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Colorless polyimides (CPIs) are widely used as high-performance materials in flexible electronic devices. From a molecular design standpoint, the industry continues to encounter challenges in developing CPIs with desired attributes, including exceptional optical transparency, excellent thermal stability, and enhanced mechanical strength. This study presents and validates a method for controlling 2-substituents, with a specific emphasis on examining how these substituents affect the thermal, mechanical, optical, and dielectric characteristics of CPIs. The presence of two CF3 groups on the same side of the diamine structure ensured the transmittance of the film. The charge transfer effect and the molecular distance are dynamically regulated by changing the 2-substituent (-OCH3/-CH3/H/F). The polyimide exhibited a well-maintained equilibrium between transparency and thermal stability, with a T500nm value ranging from 86.2 to 89.6% in the visible region, and a glass transition temperature (Tg) ranging from 358.6 to 376.0 °C. Additionally, the 6FDA-2-MTFMB compound, when combined with methyl, excels as a protective layer and base material, exhibiting excellent performance in various aspects. It has been verified as an appropriate option for flexible photodetectors and wearable piezoresistive sensors. In summary, this systematic investigation will provide a comprehensive and demonstrative methodology for developing CPIs that are capable of adapting to flexible electronic devices.
Collapse
Affiliation(s)
- Yanyu Gao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Weifeng Peng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Ji-An Wei
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Dechao Guo
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Yunjie Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Qianqian Yu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Cheng Wang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - LinGe Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
2
|
Lian M, Tian L, Huang G, Liang S, Zhang Y, Yi N, Fan L, Wu Q, Gan F, Wu Y. Recent Advances in Fluorescent Polyimides. Molecules 2024; 29:4072. [PMID: 39274921 PMCID: PMC11397098 DOI: 10.3390/molecules29174072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Polyimide (PI) refers to a type of high-performance polymer containing imide rings in the main chain, which has been widely used in fields of aerospace, microelectronic and photonic devices, gas separation technology, and so on. However, traditional aromatic PIs are, in general, the inefficient fluorescence or even no fluorescence, due to the strong inter- and intramolecular charge transfer (CT) interactions causing unavoidable fluorescence quenching, which greatly restricts their applications as light-emitting functional layers in the fabrication of organic light-emitting diode (OLED) devices. As such, the development of fluorescent PIs with high fluorescence quantum efficiency for their application fields in the OLED is an important research direction in the near future. In this review, we provide a comprehensive overview of fluorescent PIs as well as the methods to improve the fluorescence quantum efficiency of PIs. It is anticipated that this review will serve as a valuable reference and offer guidance for the design and development of fluorescent PIs with high fluorescence quantum efficiency, ultimately fostering further progress in OLED research.
Collapse
Affiliation(s)
- Manyu Lian
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Liyong Tian
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Guotao Huang
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Siming Liang
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Yangfan Zhang
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Ningbo Yi
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Longfei Fan
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Qinghua Wu
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Feng Gan
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Yancheng Wu
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
3
|
Jiang X, Chen K, Li C, Long Y, Liu S, Chi Z, Xu J, Zhang Y. Ultralow Coefficient of Thermal Expansion and a High Colorless Transparent Polyimide Film Realized Through a Reinforced Hydrogen-Bond Network by In Situ Polymerization of Aromatic Polyamide in Colorless Polyimide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41793-41805. [PMID: 37616220 DOI: 10.1021/acsami.3c05664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Colorless polyimides (CPIs) are a key substrate material for flexible organic light-emitting diode (OLED) displays and have attracted worldwide attention. Here, in this paper, the dispersion and interfacial interaction of aromatic polyamide (PA) in CPI (synthesized from 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) and 2,2'-bis(trifluoromethyl)benzidine (TFMB)) were significantly improved by in situ polymerization, and colorless transparent macromolecular polyimide composites (CPI-PAx) were successfully prepared by PA and CPI. By adjusting the ratio of PA to CPI, a high-performance engineering plastic with excellent film-forming properties was obtained. Molecular simulations confirmed the uniform distribution of PA in CPI and its interaction in polymers. In CPI-PAx, the CPI was locked by the PA chain, and numerous molecular chains were mutually entangled to form a hydrogen-bond network structure. Due to the strong interaction between the chains imparted by the hydrogen bonds of the PA, they do not slide under external forces and heating. In addition, the additive PA has excellent dimensional stability, thermal, and mechanical properties, and CPI has outstanding optical properties, so the synthesized CPI-PAx combines the comprehensive properties of PA and CPI. The CPI-PAx has excellent thermal and mechanical properties, with a thermal decomposition temperature of 499 °C, a glass transition temperature of 385 °C, a coefficient of thermal expansion of 0.8 ppm K-1, a tensile strength of 50.9 MPa, and an elastic modulus of 3.9 GPa. Particularly, CPI-PAx has a 90% transmittance in the visible region. These data prove that the strategy of combining PA and CPI by in situ polymerization is an effective method to circumvent the bottleneck of CPI in the current flexible window application, and this design strategy is universal.
Collapse
Affiliation(s)
- Xueshuang Jiang
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
| | - Kaijin Chen
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
| | - Chuying Li
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
| | - Yubo Long
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
| | - Siwei Liu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
| | - Zhenguo Chi
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
| | - Jiarui Xu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
| | - Yi Zhang
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
| |
Collapse
|
4
|
Nagella SR, Ha CS. Structural Designs of Transparent Polyimide Films with Low Dielectric Properties and Low Water Absorption: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2090. [PMID: 37513100 PMCID: PMC10386762 DOI: 10.3390/nano13142090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
The rapid development of communication networks (5G and 6G) that rely on high-speed devices requiring fast and high-quality intra- and inter-terminal signal transmission media has led to a steady increase in the need for high-performance, low-dielectric-constant (Dk) (<2.5) materials. Consequently, low-dielectric polymeric materials, particularly polyimides (PIs), are very attractive materials that are capable of meeting the requirements of high-performance terminal devices that transmit broadband high-frequency signals. However, such a PI needs to be properly designed with appropriate properties, including a low Dk, low dielectric loss (Df), and low water absorptivity. PI materials are broadly used in various fields owing to their superior property/processibility combinations. This review summarizes the structural designs of PIs with low Dk and Df values, low water-absorbing capacity, and high optical transparency intended for communication applications. Furthermore, we characterize structure-property relationships for various PI types and finally propose structural modifications required to obtain useful values of the abovementioned parameters.
Collapse
Affiliation(s)
- Sivagangi Reddy Nagella
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
5
|
Li H, Kong X, Wang S, Gong M, Lin X, Zhang L, Wang D. Sustainable Dielectric Films with Ultralow Permittivity from Soluble Fluorinated Polyimide. Molecules 2023; 28:molecules28073095. [PMID: 37049858 PMCID: PMC10096061 DOI: 10.3390/molecules28073095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
In the rapidly growing area of high-frequency communications, polyimide films with ultralow dielectric constant and dielectric loss, adequate insulating strength, and recyclability are in high demand. Using a synthesized soluble fluorinated polyimide, a series of recyclable porous dielectric films with varying porosities were fabricated in this study through nonsolvent-induced phase separation. By manipulating the mass ratio of the binary solvent used to dissolve the polyimide, the shape, size, and size distribution of the pores generated throughout the polyimide matrix can be accurately regulated. The porosity and average pore size of the as-prepared porous films were adjustable between 71% and 33% and between 9.31 and 1.00 μm, respectively, which resulted in a variable dielectric constant of 1.51–2.42 (100 kHz) and electrical breakdown strength of 30.3–119.7 kV/mm. The porous sPI film with a porosity rate of 48% displayed a low dielectric constant of 2.48 at 10 GHz. Coupled with their superior thermal stability, mechanical characteristics, and recyclability, these porous polyimide films are highly promising for constructing high-frequency microelectronic devices.
Collapse
Affiliation(s)
- Hejian Li
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiangyi Kong
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shixiao Wang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Min Gong
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiang Lin
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Liang Zhang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongrui Wang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Lu J, Zhang Y, Li J, Fu M, Zou G, Ando S, Zhuang Y. Tröger’s Base (TB)-Based Polyimides as Promising Heat-Insulating and Low- K Dielectric Materials. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Jian Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Yu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meifang Fu
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Guoxiang Zou
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Shinji Ando
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-E4-5 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yongbing Zhuang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Xia X, Zhang S, He X, Zheng F, Lu Q. Molecular necklace strategy for enhancing modulus and toughness of colorless transparent polyimides for cover window application. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Zhang Y, Zhou Y, Wang Z, Yan J. Colorless poly(amide‐imide) copolymers for flexible display applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.53082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuanhao Zhang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Science Ningbo China
- Ningbo Solartron Technology Co., Ltd Ningbo China
| | - Yubo Zhou
- Ningbo Solartron Technology Co., Ltd Ningbo China
| | - Zhen Wang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Science Ningbo China
| | - Jingling Yan
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Science Ningbo China
| |
Collapse
|
9
|
Structure and Properties of Low Dielectric Constant Polyetherimide Films Containing-CF3 and Cardo Groups. Macromol Res 2022. [DOI: 10.1007/s13233-022-0089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Li D, Wang C, Yan X, Ma S, Lu R, Qian G, Zhou H. Heat-resistant colorless polyimides from benzimidazole diamines: Synthesis and properties. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Liu Y, Wang Y, Wu D. Synthetic strategies for highly transparent and colorless polyimide film. J Appl Polym Sci 2022. [DOI: 10.1002/app.52604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yuan‐Yuan Liu
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China
- School of Future Technology University of Chinese Academy of Sciences Beijing China
| | - Ya‐Kun Wang
- School of Foreign Studies China University of Political Science and Law Beijing China
| | - Da‐Yong Wu
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China
| |
Collapse
|
12
|
Fluorine Substitution Effect on the Material Properties in Transparent Aromatic Polyimides. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2702-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Wang T, Jin Y, Mu T, Wang T, Yang J. Tröger's base polymer blended with poly(ether ketone cardo) for high temperature proton exchange membrane fuel cell applications. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Yan X, Dai F, Ke Z, Yan K, Chen C, Qian G, Li H. Synthesis of colorless polyimides with high Tg from asymmetric twisted benzimidazole diamines. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Zhi X, Jiang G, Zhang Y, Jia Y, Wu L, An Y, Liu J, Liu Y. Preparation and properties of colorless and transparent semi‐alicyclic polyimide films with enhanced high‐temperature dimensional stability via incorporation of alkyl‐substituted benzanilide units. J Appl Polym Sci 2022. [DOI: 10.1002/app.51544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xin‐Xin Zhi
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology China University of Geosciences Beijing China
| | - Gang‐Lan Jiang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology China University of Geosciences Beijing China
| | - Yan Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology China University of Geosciences Beijing China
| | - Yan‐Jiang Jia
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology China University of Geosciences Beijing China
| | - Lin Wu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology China University of Geosciences Beijing China
| | - Yuan‐Cheng An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology China University of Geosciences Beijing China
| | - Jin‐Gang Liu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology China University of Geosciences Beijing China
| | - Yan‐gai Liu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology China University of Geosciences Beijing China
| |
Collapse
|
16
|
Effect of structural isomerism on physical and gas transport properties of Tröger's Base-based polyimides. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Lei X, Xiong G, Xiao Y, Huang T, Xin X, Xue S, Zhang Q. High temperature shape memory poly(amide-imide)s with strong mechanical robustness. Polym Chem 2022. [DOI: 10.1039/d2py00739h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Shape memory poly(amide-imide)s with strong mechanical robustness, outstanding heat resistance and low water uptake were fabricated.
Collapse
Affiliation(s)
- Xingfeng Lei
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Guo Xiong
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Yuyang Xiao
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Tianhao Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Xiangze Xin
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Shuyu Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
18
|
Xue S, Lei X, Xiao Y, Xiong G, Lian R, Xin X, Peng Y, Zhang Q. Highly Refractive Polyimides Derived from Efficient Catalyst-Free Thiol–Yne Click Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuyu Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Xingfeng Lei
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Yuyang Xiao
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Guo Xiong
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Ruhe Lian
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Xiangze Xin
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Yutian Peng
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| |
Collapse
|
19
|
Zheng H, Wang C, Ma Y, Tao Z, Zhao X, Li J, Ren Q. High thermal stability and low dielectric constant of soluble polyimides containing asymmetric bulky pendant groups. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1964370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hui Zheng
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, China
| | - Chenyi Wang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, China
| | - Yan Ma
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, China
| | - Zhengwang Tao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, China
| | - Xiaoyan Zhao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, China
| | - Jian Li
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, China
| | - Qiang Ren
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, China
| |
Collapse
|
20
|
Shimizu M, Sakurai T. Metal-Free Organic Luminophores that Exhibit Dual Fluorescence and Phosphorescence Emission at Room Temperature. Chempluschem 2021; 86:446-459. [PMID: 33689234 DOI: 10.1002/cplu.202000783] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/02/2021] [Indexed: 01/24/2023]
Abstract
Dual-fluorescent-phosphorescent compounds have attracted increasing attention in various fields, such as bio-imaging, data protection/encryption, ratiometric luminescence sensing, and white-light emission. Conventional dual-emissive compounds contain a phosphorescent organometallic complex of a precious metal, such as iridium or platinum. However, the use of precious metals in organic materials has several drawbacks. This Minireview focuses on precious-metal-free organic light-emitting materials that exhibit dual fluorescence and phosphorescence emission in the solid state at room temperature to produce bimodal steady-state emission spectra. The dual emitters presented herein are categorized into the following six compound classes: (1) difluoroboron diaroylmethanes, (2) diarylketones, (3) diarylsulfones, (4) triazines and pyrimidines, (5) fused phenazines, and (6) N-arylcarbazoles.
Collapse
Affiliation(s)
- Masaki Shimizu
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, 1 Hashikami-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tsuneaki Sakurai
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, 1 Hashikami-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
21
|
Lian R, Lei X, Xiao Y, Xue S, Xiong G, Zhang Z, Yan D, Zhang Q. Synthesis and properties of colorless copolyimides derived from 4,4′-diaminodiphenyl ether-based diamines with different substituents. Polym Chem 2021. [DOI: 10.1039/d1py00633a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Highly transparent PI films with excellent mechanical strength, high heat-resistance and superior fracture toughness were fabricated.
Collapse
Affiliation(s)
- Ruhe Lian
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Xingfeng Lei
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Yuyang Xiao
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Shuyu Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Guo Xiong
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Zixiang Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Dong Yan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
22
|
Chiriac AP, Damaceanu MD. A novel approach towards crown-ether modified polyimides with affinity for alkali metal ions recognition. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Yuan Z, Zou L, Chang D, Ma X. Conformation-Dependent Phosphorescence of Galactose-Decorated Phosphors and Assembling-Induced Phosphorescence Enhancement. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52059-52069. [PMID: 33166107 DOI: 10.1021/acsami.0c17119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amorphous organic room-temperature phosphorescent (RTP) materials are promising for their facile preparation and processability, while the conformation effects of phosphors at amorphous state are lack of study in comparison with the rigid effects due to the commonly irregular assembling and dispersal of phosphors in rigid systems. Herein, we report a series of phosphorescent molecules modified by polyhydroxy galactose, whose RTP emission at the amorphous state can be regulated by controlling the conformational distortion of the phosphorescent segments. Further, a strong RTP emission is facilely obtained by the co-assembling between polyhydroxy phosphors and polyhydroxy matrices (α-CD, β-CD, and chitosan). Owing to the rigid effect of the enhanced hydrogen bonding cross-linking, the highest RTP quantum yield reaches 19.4%; whereas, the RTP emissions of assemblies become conformation insensitive. The conflicting relationship between the conformation effect and rigid effect is attributed to the differences between aggregated single-component systems and dispersed assembling systems. Besides, the unique and different moisture responsiveness of the co-assembling samples is discovered and further applied in data encryption. The research expands the scope for designing amorphous pure organic RTP materials with supramolecular strategies and shows a modularized approach for assembling-enhanced phosphorescence.
Collapse
Affiliation(s)
- Zhiyi Yuan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Zou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dongdong Chang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
24
|
Ma W, Xu Y, Zeng W, Zhu Z, Liu J. Thermal degradation kinetics of transparent fluorinated poly(imide siloxane) copolymers. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008320969777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fluorinated polyimide films are widely used in the field of flexible display because of their excellent optical transmittance. Based on previous studies, the adhesion to other substrates of fluorinated polyimide films have been improved by incorporating GAPD into the macromolecular chains, but their heat resistance is not yet very clear. In this study, thermal behaviors of fluorinated polyimide films (PIs) with and without GAPD were studied in N2 ambient and atmosphere by TG-DTG analysis under non-isothermal conditions. Activation energies (Eas) of PIs were calculated by Flynn-Wall-Ozawa method, Kissinger-Akahira-Sunose method and Kissinger method. In addition, mechanisms of thermal decomposition reaction were determined by Coats-Redfern method. By comparison, the Eas of PIs in the same atmosphere were similar and the thermal reaction mechanisms were essentially the same, indicating that adhesion of fluorinated polyimide can be improved by adding appropriate amount of GAPD, while the excellent optical permeability and heat resistance of fluorinated polyimide can be maintained, further expanding its application in flexible display and other fields.
Collapse
Affiliation(s)
- Wenxiu Ma
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yong Xu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Wei Zeng
- Institute of Chemical Engineering, Guangdong Academy of Science, Guang Zhou, China
| | - Zheng Zhu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Jinghan Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
25
|
Wu L, Wu X, Qi H, An Y, Jia Y, Zhang Y, Zhi X, Liu J. Colorless and transparent semi‐alicyclic polyimide films with intrinsic flame retardancy based on alicyclic dianhydrides and aromatic phosphorous‐containing diamine: Preparation and properties. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lin Wu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology China University of Geosciences Beijing China
| | - Xiao Wu
- ACRE Coking and Refractory Engineering Consulting Corporation MCC Dalian China
| | - Hao‐ran Qi
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology China University of Geosciences Beijing China
| | - Yuan‐cheng An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology China University of Geosciences Beijing China
| | - Yan‐Jiang Jia
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology China University of Geosciences Beijing China
| | - Yan Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology China University of Geosciences Beijing China
| | - Xin‐xin Zhi
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology China University of Geosciences Beijing China
| | - Jin‐gang Liu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology China University of Geosciences Beijing China
| |
Collapse
|
26
|
Zhang Y, Lee WH, Seong JG, Bae JY, Zhuang Y, Feng S, Wan Y, Lee YM. Alicyclic segments upgrade hydrogen separation performance of intrinsically microporous polyimide membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118363] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
|
28
|
Chen WY, Liu XL, Tang CC, Sheng SR. Novel soluble and thermally stable polyimides derived from 4-(4-diphenylphosphino)phenyl-2,6-bis(4-aminophenyl)pyridine and various aromatic dianhydrides. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1736944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Wen-Yue Chen
- Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Xiao-Ling Liu
- Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Chuan-Chao Tang
- Jiujiang Special Rubber Industry Co., Ltd, Jiujiang, Jiangxi, China
| | - Shou-Ri Sheng
- Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
29
|
Multifunctional polyimides by direct silyl ether reaction of pendant hydroxy groups: Toward low dielectric constant, high optical transparency and fluorescence. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
|
31
|
Effects of sulfonate incorporation and structural isomerism on physical and gas transport properties of soluble sulfonated polyimides. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122263] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|