1
|
Stojanov S, Plavec TV, Zupančič Š, Berlec A. Modified vaginal lactobacilli expressing fluorescent and luminescent proteins for more effective monitoring of their release from nanofibers, safety and cell adhesion. Microb Cell Fact 2024; 23:333. [PMID: 39696572 DOI: 10.1186/s12934-024-02612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024] Open
Abstract
Electrospun nanofibers offer a highly promising platform for the delivery of vaginal lactobacilli, providing an innovative approach to preventing and treating vaginal infections. To advance the application of nanofibers for the delivery of lactobacilli, tools for studying their safety and efficacy in vitro need to be established. In this study, fluorescent (mCherry and GFP) and luminescent (NanoLuc luciferase) proteins were expressed in three vaginal lactobacilli (Lactobacillus crispatus, Lactobacillus gasseri and Lactobacillus jensenii) and a control Lactiplantibacillus plantarum with the aim to use this technology for close tracking of lactobacilli release from nanofibers and their adhesion on epithelial cells. The recombinant proteins influenced the growth of the bacteria, but not their ability to produce hydrogen peroxide. Survival of lactobacilli in nanofibers immediately after electrospinning varied among species. Bacteria retained fluorescence upon incorporation into PEO nanofibers, which was vital for evaluation of their rapid release. In addition, fluorescent labelling facilitated efficient tracking of bacterial adhesion to Caco-2 epithelial cells, while luminescence provided important quantitative insights into bacterial attachment, which varied from 0.5 to 50% depending on the species. The four lactobacilli in dispersion or in nanofibers were not detrimental for the viability of Caco-2 cells, and did not demonstrate hemolytic activity highlighting the safety profiles of both bacteria and PEO nanofibers. To summarize, this study contributes to the development of a promising delivery system, tailored for local administration of safe vaginal lactobacilli.
Collapse
Affiliation(s)
- Spase Stojanov
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia
| | - Tina Vida Plavec
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana, Slovenia
| | - Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia.
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Shin J, Shin H, Lee SH, Jang JD, Kim HJ. Influence of Solvent Dielectric Constant on the Complex Coacervation Phase Behavior of Polymerized Ionic Liquids. ACS Macro Lett 2024; 13:1678-1685. [PMID: 39570941 DOI: 10.1021/acsmacrolett.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Complex coacervation is an associative phase separation process of oppositely charged polyelectrolyte solutions, resulting in a coacervate phase enriched with charged polymers and a polymer-lean phase. To date, studies on the phase behavior of complex coacervation have been largely restricted to aqueous systems with relatively high dielectric constants due to the limited solubility of most polyelectrolytes, hindering the exploration of the effects of electrostatic interactions from differences in solvent permittivity. Herein, we prepare two symmetric but oppositely charged polymerized ionic liquids (PILs), consisting of poly[1-[2-acryloyloxyethyl]-3-butylimidazolium bis(trifluoromethane)sulfonimide] (PAT) and poly[1-ethyl-3-methylimidazolium 3-[[[(trifluoromethyl)sulfonyl]amino]sulfonyl]propyl acrylate] (PEA). Due to the delocalized ionic charges and their chemical structure similarity, both PAT and PEA are soluble in various organic solvents with a wide range of dielectric constants, ranging from 16.7 (hexafluoro-2-propanol (HFIP)) to 66.1 (propylene carbonate (PC)). Notably, no significant correlation is observed between the solvent dielectric constant and the phase diagram of the complex coacervation of PILs. Most organic solvents lead to similar phase diagrams and salt resistances regardless of their dielectric constants, except two protic solvents (HFIP and 2,2,2-trifluoroethanol (TFE)) showing significantly low salt resistances compared to the others. The low salt resistance in these protic solvents primarily arises from strong hydrogen bonding between PILs and solvents as evidenced by 1H NMR and small-angle neutron scattering (SANS) experiments. Our finding suggests that for the coacervation of PILs, particularly those with delocalized and weak charge interactions, entropy from the counterion release and polymer-solvent interaction χ parameter play a more important role than the electrostatic interactions of charged molecules, rendered by the dielectric constant of the solvent medium.
Collapse
Affiliation(s)
- Jowon Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Heewoon Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Sang-Ho Lee
- Neutron Science Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 34057, Korea
| | - Jong Dae Jang
- Neutron Science Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 34057, Korea
| | - Hyeong Jun Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| |
Collapse
|
3
|
Rackov S, Pilić B, Janković N, Kosanić M, Petković M, Vraneš M. From Synthesis to Functionality: Tailored Ionic Liquid-Based Electrospun Fibers with Superior Antimicrobial Properties. Polymers (Basel) 2024; 16:2094. [PMID: 39125121 PMCID: PMC11314316 DOI: 10.3390/polym16152094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 08/12/2024] Open
Abstract
Herein, we report an efficient and facile strategy for the preparation of imidazolium-based ionic liquid (IL) monomers ([CnVIm][Br], n = 2, 4, 6, 8, 10, and 12) and their corresponding polymeric ionic liquids (PILs) with potent antimicrobial activities against Gram-negative and Gram-positive bacteria and fungi. The electrospinning technique was utilized to tailor the polymers with the highest antimicrobial potency into porous membranes that can be easily implemented into diverse systems and extend their practical bactericidal application. The antimicrobial mechanism of obtained ILs, polymers, and nanomaterials is considered concerning the bearing chain length, polymerization process, and applied processing technique that provides a unique fibrous structure. The structure composition was selected due to the well-established inherent amphiphilicity that 1-alkylimidazolium ILs possess, coupled with proven antimicrobial, antiseptic, and antifungal behavior. The customizable nature of ILs and PILs complemented with electrospinning is exploited for the development of innovative antimicrobial performances born from the intrinsic polymer itself, offering solutions to the increasing challenge of bacterial resistance. This study opens up new prospects toward designer membranes providing a complete route in their designing and revolutionizing the approach of fabricating multi-functional systems with tunable physicochemical, surface properties, and interesting morphology.
Collapse
Affiliation(s)
- Sanja Rackov
- Faculty of Technology Novi Sad, Department of Materials Engineering, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Branka Pilić
- Faculty of Technology Novi Sad, Department of Materials Engineering, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Nenad Janković
- Institute for Information Technologies Kragujevac, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia;
| | - Marijana Kosanić
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia;
| | - Marijana Petković
- Department of Atomic Physics, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia;
| | - Milan Vraneš
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia;
| |
Collapse
|
4
|
Qiu Q, Wang Z, Lan L. Polyelectrolyte-Surfactant Complex Nanofibrous Membranes for Antibacterial Applications. Polymers (Basel) 2024; 16:414. [PMID: 38337304 DOI: 10.3390/polym16030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Polyelectrolyte-surfactant complexes (PESCs) have garnered significant attention due to their extensive range of biological and industrial applications. Most present applications are predominantly used in liquid or emulsion states, which limits their efficacy in solid material-based applications. Herein, pre-hydrolyzed polyacrylonitrile (HPAN) and quaternary ammonium salts (QAS) are employed to produce PESC electrospun membranes via electrospinning. The formation process of PESCs in a solution is observed. The results show that the degree of PAN hydrolysis and the varying alkyl chain lengths of surfactants affect the rate of PESC formation. Moreover, PESCs/PCL hybrid electrospun membranes are fabricated, and their antibacterial activities against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) are investigated. The resulting electrospun membranes exhibit high bactericidal efficacy, which enables them to serve as candidates for future biomedical and filtration applications.
Collapse
Affiliation(s)
- Qiaohua Qiu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengkai Wang
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liying Lan
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
5
|
Zhang L, Sheng H, Liu R, Yang M, Guo Y, Xu Q, Hu L, Liang S, Xie H. Engineering chitosan into fully bio-sourced, water-soluble and enhanced antibacterial poly(aprotic/protic ionic liquid)s packaging membrane. Int J Biol Macromol 2023; 230:123182. [PMID: 36623617 DOI: 10.1016/j.ijbiomac.2023.123182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
The design and facile preparation of water-soluble and eco-friendly polymer packaging membrane materials is a fascinating research topic, particularly in terms of the increasing concerns on potential microplastics pollution in ecosystem. In this study, taking advantages of the structural features of chitosan (CS) and betaine hydrochloride (BHC), fully bio-sourced and water-soluble poly(aprotic/protic ionic liquid)s (PAPILs) were successfully designed and prepared through the reaction of the amino groups in CS and carboxyl groups in BHC. The structure and thermo-properties of the PAPILs were elucidated by a series of characteristic methods. The rheological properties of the PAPILs aqueous solutions were also investigated. Moreover, water-soluble PAPILs membrane with a smooth surface morphology and a tensile strength of 62.9 MPa was successfully prepared. The PAPILs membrane also exhibited satisfactory biocompatibility, excellent antibacterial activities and high oxygen barrier property. Together with these outstanding material performance and functionality, as a "proof of concept", the potential use of the PAPILs membrane as water-soluble packaging material for laundry detergent capsule and pesticide was preliminarily demonstrated. These findings provide significant insights for the design of sustainable and functional packaging materials by using natural resources.
Collapse
Affiliation(s)
- Lihua Zhang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Hailiang Sheng
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Ran Liu
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Mao Yang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Yuanlong Guo
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Qinqin Xu
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Lijie Hu
- Separation Membrane Materials & Technologies Joint Research Centre of Vontron-Guizhou University, Vontron Technol Co Ltd, Guiyang 550018, China
| | - Songmiao Liang
- Separation Membrane Materials & Technologies Joint Research Centre of Vontron-Guizhou University, Vontron Technol Co Ltd, Guiyang 550018, China
| | - Haibo Xie
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
6
|
Matsumoto A, Ukai R, Osada H, Sugihara S, Maeda Y. Tuning the Solution Viscosity of Ionic-Liquid-Based Polyelectrolytes with Solvent Dielectric Constants via the Counterion Condensation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Atsushi Matsumoto
- Department of Applied Chemistry and Biotechnology, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui910-8507, Japan
| | - Ryosuke Ukai
- Department of Applied Chemistry and Biotechnology, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui910-8507, Japan
| | - Hiroto Osada
- Department of Applied Chemistry and Biotechnology, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui910-8507, Japan
| | - Shinji Sugihara
- Department of Applied Chemistry and Biotechnology, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui910-8507, Japan
| | - Yasushi Maeda
- Department of Applied Chemistry and Biotechnology, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui910-8507, Japan
| |
Collapse
|
7
|
Ramírez O, Leal M, Briones X, Urzúa M, Bonardd S, Saldías C, Leiva A. New Hybrid Nanocomposites with Catalytic Properties Obtained by In Situ Preparation of Gold Nanoparticles on Poly (Ionic Liquid)/Poly (4-Vinylpyridine) Nanofibers. Polymers (Basel) 2022; 14:polym14183782. [PMID: 36145926 PMCID: PMC9504522 DOI: 10.3390/polym14183782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, we report the obtaining of new hybrid nanocomposites with catalytic activity formed by nanofibers of polymer blends and gold nanoparticles. The nanofibers were obtained by electrospinning blends of a poly (ionic liquid) (PIL) and its precursor polymer, poly (4-vinyl pyridine) (P4VPy). The characteristics of the nanofibers obtained proved to be dependent on the proportion of polymer in the blends. The nanofibers obtained were used to synthesize, in situ, gold nanoparticles on their surface by two-step procedure. Firstly, the adsorption of precursor ions on the nanofibers and then their reduction with sodium borohydride to generate gold nanoparticles. The results indicated a significant improvement in the performance of PIL-containing nanofibers over pure P4VPy NFs during ion adsorption, reaching a 20% increase in the amount of adsorbed ions and a 6-fold increase in the respective adsorption constant. The catalytic performance of the obtained hybrid systems in the reduction reaction of 4-nitrophenol to 4-aminophenol was studied. Higher catalytic conversions were obtained using the hybrid nanofibers containing PIL and gold nanoparticles achieving a maximum conversion rate of 98%. Remarkably, the highest value of kinetic constant was obtained for the nanofibers with the highest PIL content.
Collapse
Affiliation(s)
- Oscar Ramírez
- Departamento de Físico Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Matías Leal
- Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile
| | - Ximena Briones
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380544, Chile
| | - Marcela Urzúa
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Sebastián Bonardd
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 3, La Laguna, 38206 Tenerife, Spain
- Instituto de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna, 38206 Tenerife, Spain
| | - Cesar Saldías
- Departamento de Físico Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Angel Leiva
- Departamento de Físico Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence:
| |
Collapse
|
8
|
Nanofiber Carriers of Therapeutic Load: Current Trends. Int J Mol Sci 2022; 23:ijms23158581. [PMID: 35955712 PMCID: PMC9368923 DOI: 10.3390/ijms23158581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
The fast advancement in nanotechnology has prompted the improvement of numerous methods for the creation of various nanoscale composites of which nanofibers have gotten extensive consideration. Nanofibers are polymeric/composite fibers which have a nanoscale diameter. They vary in porous structure and have an extensive area. Material choice is of crucial importance for the assembly of nanofibers and their function as efficient drug and biomedicine carriers. A broad scope of active pharmaceutical ingredients can be incorporated within the nanofibers or bound to their surface. The ability to deliver small molecular drugs such as antibiotics or anticancer medications, proteins, peptides, cells, DNA and RNAs has led to the biomedical application in disease therapy and tissue engineering. Although nanofibers have shown incredible potential for drug and biomedicine applications, there are still difficulties which should be resolved before they can be utilized in clinical practice. This review intends to give an outline of the recent advances in nanofibers, contemplating the preparation methods, the therapeutic loading and release and the various therapeutic applications.
Collapse
|
9
|
Influence of Excipient Composition on Survival of Vaginal Lactobacilli in Electrospun Nanofibers. Pharmaceutics 2022; 14:pharmaceutics14061155. [PMID: 35745728 PMCID: PMC9229553 DOI: 10.3390/pharmaceutics14061155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
The lack of appropriate delivery systems hinders the use of probiotics in the treatment of vaginal infections. Therefore, the development of a new delivery system for the local administration of vaginal probiotics is necessary. In this study, we selected three vaginal lactobacilli, i.e., Lactobacillus crispatus, Lactobacillus gasseri, and Lactobacillus jensenii, and incorporated them into nanofibers using electrospinning. Polyethylene oxide (PEO) was used as a carrier polymer to produce nanofibers. It was supplemented with alginate and sucrose selected from a group of carbohydrates for their growth-promoting effect on lactobacilli. The interaction between excipients and lactobacilli was evaluated thermally and spectroscopically. Bacterial survival in polymer solutions and in nanofibers immediately after electrospinning and after storage varied among species and was dependent on the formulation. Sucrose improved the survival in polymer solutions and preserved the viability of L. crispatus and L. jensenii immediately after electrospinning, and L. gasseri and L. jensenii during storage. Blending PEO with alginate did not improve species viability. However, the three lactobacilli in the nanofibers retained some viability after 56 days, indicating that composite multifunctional nanofibers can maintain the viability of vaginal lactobacilli and can be used as a potential solid delivery system for vaginal administration of probiotics.
Collapse
|
10
|
Panić J, Vraneš M, Mirtič J, Korošec RC, Zupančič Š, Gadžurić S, Kristl J, Rogač MB. Preparation and characterization of innovative electrospun nanofibers loaded with pharmaceutically applicable ionic liquids. Int J Pharm 2022; 615:121510. [PMID: 35085728 DOI: 10.1016/j.ijpharm.2022.121510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022]
Abstract
Keeping up with cutting edge research in the field of drug delivery, the overall goal of this study was to develop innovative electrospun nanofibers loaded with ionic liquids (ILs) as active pharmaceutical ingredients (APIs). For the first time, a novel approach was examined by combining biocompatible polymer, poly (ethylene oxide) (PEO), and pharmaceutical ILs in an electrospinning process to develop nanofibers with high drug loading (up to 47%). Firstly, two well-known local anaesthetic drugs, lidocaine and procaine, were modified into ILs with the salicylate, forming lidocaine salicylate and procaine salicylate. Its dual-functional nature and increased water solubility for 4- to 10-fold depending on the drug used contribute to overcoming current hurdles encountered by APIs such as poor solubility, low bioavailability, and polymorphism of the solid-state. Nanofibers were formulated using solutions tested for density, viscosity, electrical conductivity, and small-angle X-ray scattering by varying PEO molecular weight and the PEO to IL mass ratio. Scanning electron microscopy showed the surface morphology of the obtained nanofibers, while Fourier transform infrared spectroscopy and differential scanning calorimetry confirmed IL in the nanofibers in an amorphous state. Thus, nanofibers with incorporated IL represent well-known drugs in the new form and a novel dermal application delivery system.
Collapse
Affiliation(s)
- Jovana Panić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Milan Vraneš
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Janja Mirtič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Romana Cerc Korošec
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljublja na, Slovenia
| | - Špela Zupančič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Slobodan Gadžurić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Julijana Kristl
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Marija Bešter Rogač
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljublja na, Slovenia
| |
Collapse
|
11
|
Zheng S, Li W, Ren Y, Liu Z, Zou X, Hu Y, Guo J, Sun Z, Yan F. Moisture-Wicking, Breathable, and Intrinsically Antibacterial Electronic Skin Based on Dual-Gradient Poly(ionic liquid) Nanofiber Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106570. [PMID: 34751468 DOI: 10.1002/adma.202106570] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/01/2021] [Indexed: 05/15/2023]
Abstract
Electronic skin can detect minute electrical potential changes in the human skin and represent the body's state, which is critical for medical diagnostics and human-computer interface development. On the other hand, sweat has a significant effect on the signal stability, comfort, and safety of electronic skin in a real-world application. In this study, by modifying the cation and anion of a poly(ionic liquid) (PIL) and employing a spinning process, a PIL-based multilayer nanofiber membrane (PIL membrane) electronic skin with a dual gradient is created. The PIL electronic skin is moisture-wicking and breathable due to the hydrophilicity and pore size-gradients. The intrinsically antimicrobial activities of PILs allow the safe collection of bioelectrical signals from the human body, such as electrocardiography (ECG) and electromyography (EMG). In addition, a robotic hand may be operated in real-time, and a preliminary human-computer interface can be accomplished by simple processing of the collected EMG signal. This study establishes a novel practical approach for monitoring and using bioelectrical signals in real-world circumstances via the multifunctional electronic skin.
Collapse
Affiliation(s)
- Sijie Zheng
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yongyuan Ren
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiuyang Zou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yin Hu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhe Sun
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
12
|
Effect of core-to-shell flowrate ratio on morphology, crystallinity, mechanical properties and wettability of poly(lactic acid) fibers prepared via modified coaxial electrospinning. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Preparation of Nanofibers Mats Derived from Task-Specific Polymeric Ionic Liquid for Sensing and Catalytic Applications. Polymers (Basel) 2021; 13:polym13183110. [PMID: 34578009 PMCID: PMC8473143 DOI: 10.3390/polym13183110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Nanofibers mats derived from the task-specific functionalized polymeric ionic liquids based on homocysteine thiolactone are obtained by electrospinning them as blends with polyvinylpyrrolidone. The presence of this functional moiety allowed the post-functionalization of these mats through the aminolysis of the thiolactone ring in the presence of an amine by a thiol–alkene “click” reaction. Under controlled experimental conditions the modification can be performed introducing different functionalization and crosslinking of the electrospun fibers, while maintaining the nanostructure obtained by the electrospinning. Initial studies suggest that the nanofibers based on these functionalized polymeric ionic liquids can be used in both sensing and catalytic applications.
Collapse
|
14
|
Ogbuoji EA, Zaky AM, Escobar IC. Advanced Research and Development of Face Masks and Respirators Pre and Post the Coronavirus Disease 2019 (COVID-19) Pandemic: A Critical Review. Polymers (Basel) 2021; 13:1998. [PMID: 34207184 PMCID: PMC8235328 DOI: 10.3390/polym13121998] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/05/2022] Open
Abstract
The outbreak of the COVID-19 pandemic, in 2020, has accelerated the need for personal protective equipment (PPE) masks as one of the methods to reduce and/or eliminate transmission of the coronavirus across communities. Despite the availability of different coronavirus vaccines, it is still recommended by the Center of Disease Control and Prevention (CDC), World Health Organization (WHO), and local authorities to apply public safety measures including maintaining social distancing and wearing face masks. This includes individuals who have been fully vaccinated. Remarkable increase in scientific studies, along with manufacturing-related research and development investigations, have been performed in an attempt to provide better PPE solutions during the pandemic. Recent literature has estimated the filtration efficiency (FE) of face masks and respirators shedding the light on specific targeted parameters that investigators can measure, detect, evaluate, and provide reliable data with consistent results. This review showed the variability in testing protocols and FE evaluation methods of different face mask materials and/or brands. In addition to the safety requirements needed to perform aerosol viral filtration tests, one of the main challenges researchers currently face is the inability to simulate or mimic true aerosol filtration scenarios via laboratory experiments, field tests, and in vitro/in vivo investigations. Moreover, the FE through the mask can be influenced by different filtration mechanisms, environmental parameters, filtration material properties, number of layers used, packing density, fiber charge density, fiber diameter, aerosol type and particle size, aerosol face velocity and concentration loadings, and infectious concentrations generated due to different human activities. These parameters are not fully understood and constrain the design, production, efficacy, and efficiency of face masks.
Collapse
Affiliation(s)
- Ebuka A. Ogbuoji
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA;
| | - Amr M. Zaky
- BioMicrobics Inc., 16002 West 110th Street, Lenexa, KS 66219, USA;
| | - Isabel C. Escobar
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA;
| |
Collapse
|
15
|
Matsumoto A, Yoshizawa R, Urakawa O, Inoue T, Shen AQ. Rheological Scaling of Ionic Liquid-Based Polyelectrolytes in the Semidilute Unentangled Regime from Low to High Salt Concentrations. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Atsushi Matsumoto
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
- Department of Applied Chemistry and Biotechnology, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan
| | - Ryota Yoshizawa
- Department of Macromolecular Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Osamu Urakawa
- Department of Macromolecular Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Tadashi Inoue
- Department of Macromolecular Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| |
Collapse
|
16
|
Development of Inula graveolens (L.) Plant Extract Electrospun/Polycaprolactone Nanofibers: A Novel Material for Biomedical Application. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020828] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recently, there has been a growing interest in research on nanofibrous scaffolds developed by electrospinning bioactive plant extracts. In this study, the extract material obtained from the medicinal plant Inula graveolens (L.) was loaded on polycaprolactone (PCL) electrospun polymeric nanofibers. The combined mixture was prepared by 5% of I. graveolens at 8% (PCL) concentration and electrospun under optimal conditions. The chemical analysis, morphology, and crystallization of polymeric nanofibers were carried out by (FT-IR) spectrometer, scanning electron microscopy (SEM), and XRD diffraction. Hydrophilicity was determined by a contact angle experiment. The strength was characterized, and the toxicity of scaffolds on the cell line of fibroblasts was finally investigated. The efficiency of nanofibers to enhance the proliferation of fibroblasts was evaluated in vitro using the optimal I. graveolens/PCL solutions. The results show that I. graveolens/PCL polymeric scaffolds exhibited dispersion in homogeneous nanofibers around 72 ± 963 nm in the ratio 70/30 (V:V), with no toxicity for cells, meaning that they can be used for biomedical applications.
Collapse
|
17
|
Peer P, Zelenkova J, Filip P, Lovecka L. An Estimate of the Onset of Beadless Character of Electrospun Nanofibers Using Rheological Characterization. Polymers (Basel) 2021; 13:polym13020265. [PMID: 33466955 PMCID: PMC7829922 DOI: 10.3390/polym13020265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/14/2023] Open
Abstract
Electrospinning represents the very effective process of producing nanofibrous mats. This process is influenced by a number of mutually and strongly interlaced entry parameters (characteristics of polymer, solvent, process parameters) and their participation in the resulting nanofiber quality. The appearance of nanofibers is a result of the necessary primary experimental parameter setting within an acceptable range. However, finer analysis of nanofiber quality depends on the proper choice of these individual factors. The aim of this contribution is to evaluate one of the key factors—polymer concentration—with respect to the presence or absence of bead formation. This passage can be approximated by rheological oscillatory measurements when a sudden decrease in phase angle indicates this change. It replaces otherwise time- and cost-consuming trial-and-error experiments. This approach was tested using three different materials: solutions of poly(vinylidene fluoride-co-hexafluoropropylene), poly(vinyl butyral), and poly(ethylene oxide).
Collapse
Affiliation(s)
- Petra Peer
- Institute of Hydrodynamics, Czech Academy of Sciences, 166 12 Prague, Czech Republic; (J.Z.); (P.F.)
- Correspondence:
| | - Jana Zelenkova
- Institute of Hydrodynamics, Czech Academy of Sciences, 166 12 Prague, Czech Republic; (J.Z.); (P.F.)
| | - Petr Filip
- Institute of Hydrodynamics, Czech Academy of Sciences, 166 12 Prague, Czech Republic; (J.Z.); (P.F.)
| | - Lenka Lovecka
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic;
| |
Collapse
|
18
|
Padalhin A, Ventura R, Kim B, Sultana T, Park CM, Lee BT. Boosting osteogenic potential and bone regeneration by co-cultured cell derived extracellular matrix incorporated porous electrospun scaffold. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:779-798. [PMID: 33375905 DOI: 10.1080/09205063.2020.1869879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Implants for bone regeneration to remedy segmental bone defects, osteomyelitis, necrotic bone tissue and non-union fractures have worldwide appeal. Although biomaterials offer most of the advantages by improving tissue growth but developments are more commonly achieved via biologically derived molecules. To aid site specific bone tissue regeneration by synthetic scaffold, cell derived extracellular matrix (ECM) can be a crucial component. In this study, co-cultured bone marrow mesenchymal stem cell and osteoblastic cells derived ECM incorporated electrospun polycaprolactone (PCL) membranes were assessed for bone tissue engineering application. The preliminary experimental details indicated that, co-culture of cells supported enhanced in vitro ECM synthesis followed by successful deposition of osteoblastic ECM into electrospun membranes. The acellular samples revealed retention of ECM related biomacromolecules (collagen, glycosaminoglycan) and partial recovery of pores after decellularization. In vitro biocompatibility tests ensured improvement of proliferation and osteoblastic differentiation of MC3T3-E1 cells in decellularized ECM containing membrane (PCL-ECM) compared to bare membrane (PCL-B) which was further confirmed by osteogenic marker proteins expression analysis. The decellularized PCL-ECM membrane allowed great improvement of bone regeneration over the bare membrane (PCL-B) in 8 mm size critical sized rat skull defects at 2 months of post implantation. In short, the outcome of this study could be impactful in development and application of cell derived ECM based synthetic electrospun templates for bone tissue engineering application.[Formula: see text].
Collapse
Affiliation(s)
- Andrew Padalhin
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Reiza Ventura
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Boram Kim
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Tamanna Sultana
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea
| | - Chan Mi Park
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
19
|
Phan DN, Khan MQ, Nguyen NT, Phan TT, Ullah A, Khatri M, Kien NN, Kim IS. A review on the fabrication of several carbohydrate polymers into nanofibrous structures using electrospinning for removal of metal ions and dyes. Carbohydr Polym 2021; 252:117175. [DOI: 10.1016/j.carbpol.2020.117175] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022]
|
20
|
Wang Y, Shao Y, Wang H, Yuan J. Advanced Heteroatom-Doped Porous Carbon Membranes Assisted by Poly(ionic liquid) Design and Engineering. ACCOUNTS OF MATERIALS RESEARCH 2020; 1:16-29. [PMID: 33163972 PMCID: PMC7640738 DOI: 10.1021/accountsmr.0c00010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Heteroatom-doped porous carbon membranes (HPCMMs) with a tailor-made pore architecture, chemical composition, atomic structural order, and surface state represent an exciting family of porous carbon materials for diverse potential applications in catalysis, water treatment, biofiltration, energy conversion/storage, and so forth. Conventional porous carbon membranes possess intrinsic structural integrity, interconnectivity, and chemical purity across the atomic-to-macro world and have been popularly incorporated into devices as separators or chemically inert conductive supports, circumventing otherwise the inevitable complicated processing and structure weakness of their fine powderous counterpart. Motivated by the distinguished heteroatom-doping effect that revolutionizes the chemical and physical nature of carbon materials, the HPCMM research surges very recently, and focuses not only on the eminent conductive supports or separators but also on electro(co)catalysts in energy devices. Synergy of the porous nature, incorporation of heteroatoms, and the membrane state creates a vivid profile pattern and new task-specific usage. It is also noteworthy that the inherent structural merits of HPCMMs plus a high electron conductivity imbue them as a reliable binder-free model electrode to derive the intrinsic structure-property relationship of porous carbons in electrochemical environments, excluding the complex and adverse factors in association with polymer binders in carbon powder-based electrodes. HPCMMs are of both intense academic interest and practical value because of their well-defined properties endowed by controllable structure and porosity at both atomic and macroscopic scales in a membrane form. The sole aim of this article is to bring this group of porous carbon materials to the forefront so their comprehensive properties and functions can be better understood to serve the carbon community to address pressing materials challenges in our society. In this Account, we highlight the latest discovery and proceedings of HPCMMs, particularly the advancements in how to tailor structures and properties of HPCMMs by rational structure design of porous polymer membranes as sacrificial template built up especially from heteroatom-rich poly(ionic liquid)s (PILs). We will also stress the carbonization craft and the state-of-the-art electrochemical applications for HPCMMs. Key factors and thoughts in heteroatom doping and porous systems in HPCMMs are discussed. A future perspective of the challenges and promising potential of HPCMMs is cast on the basis of these achievements.
Collapse
Affiliation(s)
- Yucheng Wang
- Department of Materials and Environmental Chemistry,
Stockholm University, 10691 Stockholm,
Sweden
| | - Yue Shao
- Key Laboratory of Functional Polymer Materials
(Ministry of Education), Institute of Polymer Chemistry, College of Chemistry,
Nankai University, Tianjin 300071, P. R.
China
| | - Hong Wang
- Key Laboratory of Functional Polymer Materials
(Ministry of Education), Institute of Polymer Chemistry, College of Chemistry,
Nankai University, Tianjin 300071, P. R.
China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry,
Stockholm University, 10691 Stockholm,
Sweden
| |
Collapse
|