1
|
Hu T, Ren Y, Li W. Annihilation Kinetics of an Interacting 5/7-Dislocation Pair in the Hexagonal Cylinders of AB Diblock Copolymer. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tianyi Hu
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yongzhi Ren
- Key Lab of In-fiber Integrated Optics, Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, 150001 Harbin, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Pula P, Leniart A, Majewski PW. Solvent-assisted self-assembly of block copolymer thin films. SOFT MATTER 2022; 18:4042-4066. [PMID: 35608282 DOI: 10.1039/d2sm00439a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solvent-assisted block copolymer self-assembly is a compelling method for processing and advancing practical applications of these materials due to the exceptional level of the control of BCP morphology and significant acceleration of ordering kinetics. Despite substantial experimental and theoretical efforts devoted to understanding of solvent-assisted BCP film ordering, the development of a universal BCP patterning protocol remains elusive; possibly due to a multitude of factors which dictate the self-assembly scenario. The aim of this review is to aggregate both seminal reports and the latest progress in solvent-assisted directed self-assembly and to provide the reader with theoretical background, including the outline of BCP ordering thermodynamics and kinetics phenomena. We also indicate significant BCP research areas and emerging high-tech applications where solvent-assisted processing might play a dominant role.
Collapse
Affiliation(s)
- Przemyslaw Pula
- Department of Chemistry, University of Warsaw, Warsaw 02089, Poland.
| | - Arkadiusz Leniart
- Department of Chemistry, University of Warsaw, Warsaw 02089, Poland.
| | - Pawel W Majewski
- Department of Chemistry, University of Warsaw, Warsaw 02089, Poland.
| |
Collapse
|
3
|
Neppalli SN, Collins TW, Gholamvand Z, Cummins C, Morris MA, Mokarian-Tabari P. Defining Swelling Kinetics in Block Copolymer Thin Films: The Critical Role of Temperature and Vapour Pressure Ramp. Polymers (Basel) 2021; 13:4238. [PMID: 34883741 PMCID: PMC8659708 DOI: 10.3390/polym13234238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
We studied the kinetics of swelling in high-χ lamellar-forming poly(styrene)-block- poly(lactic acid) (PS-b-PLA) block copolymer (BCP) by varying the heating rate and monitoring the solvent vapour pressure and the substrate temperature in situ during solvo-thermal vapour annealing (STVA) in an oven, and analysing the resulting morphology. Our results demonstrate that there is not only a solvent vapour pressure threshold (120 kPa), but also that the rate of reaching this pressure threshold has a significant effect on the microphase separation and the resulting morphologies. To study the heating rate effect, identical films were annealed in a tetrahydrofuran (THF) vapour environment under three different ramp regimes, low (rT<1 °C/min), medium (2
Collapse
Affiliation(s)
- Sudhakara Naidu Neppalli
- School of Chemistry, The University of Dublin, Trinity College Dublin, D02 PN40 Dublin, Ireland; (S.N.N.); (Z.G.); (M.A.M.)
- Advance Material and BioEngineering Research (AMBER) Centre and CRANN, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Timothy W. Collins
- Department of Chemistry, University College Cork, Tyndall National Institute, T12 K8AF Cork, Ireland;
| | - Zahra Gholamvand
- School of Chemistry, The University of Dublin, Trinity College Dublin, D02 PN40 Dublin, Ireland; (S.N.N.); (Z.G.); (M.A.M.)
- Advance Material and BioEngineering Research (AMBER) Centre and CRANN, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Cian Cummins
- Centre de Recherche Paul Pascal (CRPP), The French National Centre for Scientific Research (CNRS), University of Bordeaux, UMR 5031, 115 Avenue Schweitzer, 33600 Pessac, France;
- Laboratoire de Chimie des Polymeres Organiques (LCPO), University of Bordeaux, CNRS, Bordeaux INP, 16 Avenue Pey-Berland, CEDEX, 33607 Pessac, France
| | - Michael A. Morris
- School of Chemistry, The University of Dublin, Trinity College Dublin, D02 PN40 Dublin, Ireland; (S.N.N.); (Z.G.); (M.A.M.)
- Department of Chemistry, University College Cork, Tyndall National Institute, T12 K8AF Cork, Ireland;
| | - Parvaneh Mokarian-Tabari
- School of Chemistry, The University of Dublin, Trinity College Dublin, D02 PN40 Dublin, Ireland; (S.N.N.); (Z.G.); (M.A.M.)
- Advance Material and BioEngineering Research (AMBER) Centre and CRANN, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
4
|
Ho K, Kim KS, de Beer S, Walker GC. Chemical Composition and Strain at Interfaces between Different Morphologies in Block Copolymer Thin Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12723-12731. [PMID: 34693716 DOI: 10.1021/acs.langmuir.1c02169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transitional composition between two thin-film morphologies of the block copolymer, polystyrene-block-poly(tert-butyl acrylate) (PS-b-PtBuA), was investigated using near-field infrared spectroscopy and atomic force microscopy mechanical measurements. These techniques allowed block identification with nanoscale spatial resolution and elucidated the material's sub-surface composition. PS was found to form coronae around the PtBuA block in spherical valleys on flat areas of the film, and coronae of PtBuA surrounding the PS lamellae were observed at the edge of the polymer film, where parallel lamellae are formed. Furthermore, we found that the peak position and width varied by location, which may be a result of block composition, chain tension, or substrate interaction.
Collapse
Affiliation(s)
- Kevin Ho
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Kris S Kim
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Sissi de Beer
- Sustainable Polymer Chemistry, Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Gilbert C Walker
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
5
|
Hu T, Ren Y, Li W. Impact of Molecular Asymmetry of Block Copolymers on the Stability of Defects in Aligned Lamellae. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tianyi Hu
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yongzhi Ren
- Key Lab of In-fiber Integrated Optics, Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, 150001 Harbin, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
6
|
Wang H, Qian T, Xu X. Onsager's variational principle in active soft matter. SOFT MATTER 2021; 17:3634-3653. [PMID: 33480912 DOI: 10.1039/d0sm02076a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Onsagers variational principle (OVP) was originally proposed by Lars Onsager in 1931 [L. Onsager, Phys. Rev., 1931, 37, 405]. This fundamental principle provides a very powerful tool for formulating thermodynamically consistent models. It can also be employed to find approximate solutions, especially in the study of soft matter dynamics. In this work, OVP is extended and applied to the dynamic modeling of active soft matter such as suspensions of bacteria and aggregates of animal cells. We first extend the general formulation of OVP to active matter dynamics where active forces are included as external non-conservative forces. We then use OVP to analyze the directional motion of individual active units: a molecular motor walking on a stiff biofilament and a toy two-sphere microswimmer. Next we use OVP to formulate a diffuse-interface model for an active polar droplet on a solid substrate. In addition to the generalized hydrodynamic equations for active polar fluids in the bulk region, we have also derived thermodynamically consistent boundary conditions. Finally, we consider the dynamics of a thin active polar droplet under the lubrication approximation. We use OVP to derive a generalized thin film equation and then employ OVP as an approximation tool to find the spreading laws for the thin active polar droplet. By incorporating the activity of biological systems into OVP, we develop a general approach to construct thermodynamically consistent models for better understanding the emergent behaviors of individual animal cells and cell aggregates or tissues.
Collapse
Affiliation(s)
- Haiqin Wang
- Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | | | | |
Collapse
|
7
|
Tang Q, Müller M. Evaporation-Induced Liquid Expansion and Bubble Formation in Binary Mixtures. PHYSICAL REVIEW LETTERS 2021; 126:028003. [PMID: 33512230 DOI: 10.1103/physrevlett.126.028003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
We observe an anomalous liquid expansion after quenching a binary mixture at coexistence to low pressures in the vapor phase by numerical calculations. This evaporation-induced expansion can be attributed to the pressure imbalance near the liquid-vapor interface, which originates from the interplay between the complex thermodynamics of binary mixtures both in the vapor and liquid phases, as well as their dynamical asymmetries. In addition, careful modulation of the pressure quench in the vapor phase can result in spinodal bubble formation inside liquid phase. The results indicate that the thermodynamics-kinetics interplay could foster our fundamental understanding of the evaporation process and promote its practical applications.
Collapse
Affiliation(s)
- Qiyun Tang
- Institut für Theoretische Physik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Marcus Müller
- Institut für Theoretische Physik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
8
|
Hu T, Ren Y, Zhang L, Li W. Impact of Architecture of Symmetric Block Copolymers on the Stability of a Dislocation Defect. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c01654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tianyi Hu
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yongzhi Ren
- Key Lab of In-fiber Integrated Optics, Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, 150001 Harbin, China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
9
|
Rottler J, Müller M. Kinetic Pathways of Block Copolymer Directed Self-Assembly: Insights from Efficient Continuum Modeling. ACS NANO 2020; 14:13986-13994. [PMID: 32909745 DOI: 10.1021/acsnano.0c06433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We introduce a computationally efficient continuum technique to simulate the complex kinetic pathways of block copolymer self-assembly. Subdiffusive chain dynamics is taken into account via nonlocal Onsager coefficients. An application to directed self-assembly of thin films of diblock copolymers on patterned substrates reveals the conditions under which experimentally observed metastable structures intervene in the desired thin-film morphology. The approach generalizes easily to multiblock copolymers and more complex guiding patterns on the substrate, and its efficiency allows for the systematic optimization of guiding patterns and process conditions.
Collapse
Affiliation(s)
- Jörg Rottler
- Department of Physics and Astronomy and Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
10
|
Shi W. Role of Defects in Achieving Highly Asymmetric Lamellar Self-Assembly in Block Copolymer/Homopolymer Blends. J Phys Chem Lett 2020; 11:2724-2730. [PMID: 32203668 DOI: 10.1021/acs.jpclett.0c00459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lamellar structure is a prominent state in soft condensed matter. Swelling lamellar layers to highly asymmetric structures by a second component is a facile, cost-effective strategy to impart materials with adaptive size and tunable properties. One key question that remains unsolved is how defects form and affect the asymmetric lamellar order. This study unravels the role of defects by swelling a miktoarm block copolymer with a homopolymer. Ordered lamellae first lose translational order by a significant increase in the number of dislocations and then lose orientational order by the generation of disclinations. The homopolymers are not uniformly distributed in defective lamellae and primarily segregate in the vicinity of disclination cores. The free energy of defects is mainly contributed by molecular splay and significantly alleviated by an increased radius of local curvature. This study provides direct evidence to reveal the role of defects and lamellar order in block copolymer/homopolymer blends and also sheds light on understanding analogous structural transitions in other soft systems, including lyotropic liquid crystals, phospholipid membranes, and polymer nanocomposites.
Collapse
Affiliation(s)
- Weichao Shi
- Key Laboratory of Functional Polymer Materials (Ministry of Education) and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Gu J, Zhang R, Zhang L, Lin J. Harnessing Zone Annealing to Program Directional Motion of Nanoparticles in Diblock Copolymers: Creating Periodically Well-Ordered Nanocomposites. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiabin Gu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Runrong Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|