1
|
Lee JH, Oh S, Jeong IS, Lee YJ, Kim MC, Park JS, Hyun K, Ware TH, Ahn SK. Redefining the limits of actuating fibers via mesophase control: From contraction to elongation. SCIENCE ADVANCES 2025; 11:eadt7613. [PMID: 39823321 PMCID: PMC11740944 DOI: 10.1126/sciadv.adt7613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
The development of fibrous actuators with diverse actuation modes is expected to accelerate progress in active textiles, robotics, wearable electronics, and haptics. Despite the advances in responsive polymer-based actuating fibers, the available actuation modes are limited by the exclusive reliance of current technologies on thermotropic contraction along the fiber axis. To address this gap, the present study describes a reversible and spontaneous thermotropic elongation (~30%) in liquid crystal elastomer fibers produced via ultraviolet-assisted melt spinning. This elongation arises from the orthogonal alignment of smectogenic mesogens relative to the fiber axis, which contrasts the parallel alignment typically observed in nematic liquid crystal elastomer fibers and is achieved through mesophase control during extrusion. The fibers exhibiting thermotropic elongation enable active textiles increase pore size in response to temperature increase. The integration of contracting and elongating fibers within a single textile enables spatially distinct actuation, paving the way for innovations in smart clothing and fiber/textile actuators.
Collapse
Affiliation(s)
- Jin-Hyeong Lee
- School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
| | - Seungjoon Oh
- School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
| | - In-sun Jeong
- Department of Polymer Science and Engineering, Pusan National University, Busan, Republic of Korea
| | - Yoo Jin Lee
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Min Chan Kim
- School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
| | - Jong S. Park
- School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
| | - Kyu Hyun
- School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
| | - Taylor H. Ware
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Suk-kyun Ahn
- School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
2
|
Herard N, Annapooranan R, Henry T, Kröger M, Cai S, Boechler N, Sliozberg Y. Modeling nematic phase main-chain liquid crystal elastomer synthesis, mechanics, and thermal actuation via coarse-grained molecular dynamics. SOFT MATTER 2024; 20:9219-9231. [PMID: 39539115 DOI: 10.1039/d4sm00528g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This paper presents a coarse-grained molecular dynamics simulation study of the synthesis, mechanics, and thermal actuation of nematic phase main-chain liquid crystal elastomers (LCEs), a type of soft, temperature-responsive, polymeric actuating material. The simulations herein model the crosslinking, mechanical stretching, and additional crosslinking synthesis process, following which, the simulated LCE exhibits a direction-dependent thermal actuation and mechanical response. The thermal actuation response shows good qualitative agreement with experimental results, including the variation of a global order parameter that describes the orientation of the mesogen domains comprising the LCE. The mechanical response due to applied deformation shows less agreement, but manifests the key features observed in experiments on LCEs, namely soft strain and hyperelasticity that is present when loaded perpendicularly and in-line, respectively, to the mesogen alignment direction. We also present a topological analysis of the simulated LCEs, which, in conjunction with the simulated thermomechanical responses, allows us to infer the relative contribution of entanglements and chemical crosslinks on those responses. We suggest that the model proposed herein will help enable improved LCE formulations via mechanistic insights that can be gained via the use of such a relatively computationally inexpensive coarse-grained molecular dynamics model, which may be of further value to application areas including soft robotics, bio-mimicking devices, artificial muscles, and adaptive materials.
Collapse
Affiliation(s)
- Nicolas Herard
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Raja Annapooranan
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Todd Henry
- DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland, 21005, USA.
| | - Martin Kröger
- Magnetism and Interface Physics & Computational Polymer Physics, Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Nicholas Boechler
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
- Program in Materials Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yelena Sliozberg
- DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland, 21005, USA.
| |
Collapse
|
3
|
Bauman GE, McCracken JM, White TJ. Actuation of Liquid Crystalline Elastomers at or Below Ambient Temperature. Angew Chem Int Ed Engl 2022; 61:e202202577. [PMID: 35482590 DOI: 10.1002/anie.202202577] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 11/09/2022]
Abstract
Liquid crystal elastomers (LCE) are an emerging class of material actuators. LCE undergo macroscopic dimensional changes when subjected to a stimulus. The large stimuli-response of LCE is associated with thermotropic disruption of order. Historically, comparatively high temperatures are required to disrupt orientation in LCE to achieve meaningful work output. Here, we introduce an approach to prepare LCE via thiol-Michael/thiol-ene reactions that actuate at or below ambient temperature. Alignment was imparted to the LCE by mechanical alignment and 3D printing. The LCE materials detailed here achieve strains of 40 % with a maximum deformation rate of 6.5 % °C-1 . The functional utility of the tunability of the thermotropic response of these materials is illustrated in reconfiguration triggered via body heat and sequential actuation of a multi-material element.
Collapse
Affiliation(s)
- Grant E Bauman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA
| | - Joselle M McCracken
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA
| |
Collapse
|
4
|
Bauman GE, McCracken JM, White TJ. Actuation of Liquid Crystalline Elastomers at or Below Ambient Temperature. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Grant E. Bauman
- Department of Chemical and Biological Engineering University of Colorado Boulder 596 UCB Boulder CO 80309 USA
| | - Joselle M. McCracken
- Department of Chemical and Biological Engineering University of Colorado Boulder 596 UCB Boulder CO 80309 USA
| | - Timothy J. White
- Department of Chemical and Biological Engineering University of Colorado Boulder 596 UCB Boulder CO 80309 USA
| |
Collapse
|
5
|
Li Y, Liu T, Ambrogi V, Rios O, Xia M, He W, Yang Z. Liquid Crystalline Elastomers Based on Click Chemistry. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14842-14858. [PMID: 35319184 DOI: 10.1021/acsami.1c21096] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid crystalline elastomers (LCEs) have emerged as an important class of functional materials that are suitable for a wide range of applications, such as sensors, actuators, and soft robotics. The unique properties of LCEs originate from the combination between liquid crystal and elastomeric network. The control of macroscopic liquid crystalline orientation and network structure is crucial to realizing the useful functionalities of LCEs. A variety of chemistries have been developed to fabricate LCEs, including hydrosilylation, free radical polymerization of acrylate, and polyaddition of epoxy and carboxylic acid. Over the past few years, the use of click chemistry has become a more robust and energy-efficient way to construct LCEs with desired structures. This article provides an overview of emerging LCEs based on click chemistries, including aza-Michael addition between amine and acrylate, radical-mediated thiol-ene and thiol-yne reactions, base-catalyzed thiol-acrylate and thiol-epoxy reactions, copper-catalyzed azide-alkyne cycloaddition, and Diels-Alder cycloaddition. The similarities and differences of these reactions are discussed, with particular attention focused on the strengths and limitations of each reaction for the preparation of LCEs with controlled structures and orientations. The compatibility of these reactions with the traditional and emerging processing techniques, such as surface alignment and additive manufacturing, are surveyed. Finally, the challenges and opportunities of using click chemistry for the design of LCEs with advanced functionalities and applications are discussed.
Collapse
Affiliation(s)
- Yuzhan Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tuan Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Veronica Ambrogi
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Napoli 80125, Italy
| | - Orlando Rios
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Min Xia
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wanli He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhou Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Zhang X, Lin G, Guo H, Yang F. Tetraphenylethylene-rufigallol-tetraphenylethylene trimers: Novel fluorescence liquid crystals in aggregated states. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Del Pozo M, Sol JAHP, Schenning APHJ, Debije MG. 4D Printing of Liquid Crystals: What's Right for Me? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104390. [PMID: 34716625 DOI: 10.1002/adma.202104390] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/20/2021] [Indexed: 05/24/2023]
Abstract
Recent years have seen major advances in the developments of both additive manufacturing concepts and responsive materials. When combined as 4D printing, the process can lead to functional materials and devices for use in health, energy generation, sensing, and soft robots. Among responsive materials, liquid crystals, which can deliver programmed, reversible, rapid responses in both air and underwater, are a prime contender for additive manufacturing, given their ease of use and adaptability to many different applications. In this paper, selected works are compared and analyzed to come to a didactical overview of the liquid crystal-additive manufacturing junction. Reading from front to back gives the reader a comprehensive understanding of the options and challenges in the field, while researchers already experienced in either liquid crystals or additive manufacturing are encouraged to scan through the text to see how they can incorporate additive manufacturing or liquid crystals into their own work. The educational text is closed with proposals for future research in this crossover field.
Collapse
Affiliation(s)
- Marc Del Pozo
- Laboratory for Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Jeroen A H P Sol
- Laboratory for Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Albert P H J Schenning
- Laboratory for Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Michael G Debije
- Laboratory for Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| |
Collapse
|
8
|
Kim K, Guo Y, Bae J, Choi S, Song HY, Park S, Hyun K, Ahn SK. 4D Printing of Hygroscopic Liquid Crystal Elastomer Actuators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100910. [PMID: 33938152 DOI: 10.1002/smll.202100910] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Liquid crystal elastomers (LCEs) are broadly recognized as programmable actuating materials that are responsive to external stimuli, typically heat or light. Yet, soft LCEs that respond to changes in environmental humidity are not reported, except a few examples based on rigid liquid crystal networks with limited processing. Herein, a new class of highly deformable hygroscopic LCE actuators that can be prepared by versatile processing methods, including surface alignment as well as 3D printing is presented. The dimethylamino-functionalized LCE is prepared by the aza-Michael addition reaction between a reactive LC monomer and N,N'-dimethylethylenediamine as a chain extender, followed by photopolymerization. The humidity-responsive properties are introduced by activating one of the LCE surfaces with an acidic solution, which generates cations on the surface and provides asymmetric hydrophilicity to the LCE. The resulting humidity-responsive LCE undergoes programmed and reversible hygroscopic actuation, and its shape transformation can be directed by the cut angle with respect to a nematic director or by localizing activation regions in the LCE. Most importantly, various hygroscopic LCE actuators, including (porous) bilayers, a flower, a concentric square array, and a soft gripper, are successfully fabricated by using LC inks in UV-assisted direct-ink-writing-based 3D printing.
Collapse
Affiliation(s)
- Keumbee Kim
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Yuanhang Guo
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaehee Bae
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Subi Choi
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyeong Yong Song
- Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Sungmin Park
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Kyu Hyun
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Suk-Kyun Ahn
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
9
|
Lee Y, Choi S, Kang BG, Ahn SK. Effect of Isomeric Amine Chain Extenders and Crosslink Density on the Properties of Liquid Crystal Elastomers. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3094. [PMID: 32664370 PMCID: PMC7412247 DOI: 10.3390/ma13143094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/25/2022]
Abstract
Among the various types of shape changing materials, liquid crystal elastomers (LCEs) have received significant attention as they can undergo programmed and reversible shape transformations. The molecular engineering of LCEs is the key to manipulating their phase transition, mechanical properties, and actuation performance. In this work, LCEs containing three different types of butyl groups (n-, iso-, and sec-butyl) in the side chain were synthesized, and the effect of isomeric amine chain extenders on the thermal, mechanical, and actuation properties of the resulting LCEs was investigated. Because of the considerably low reactivity of the sec-butyl group toward the diacrylate in the LC monomer, only a densely crosslinked LCE was synthesized. Most interestingly, the mechanical properties, actuation temperature, and blocking stress of the LCEs comprising isobutyl groups were higher than those of the LCEs comprising n-butyl groups. This difference was attributed to the presence of branches in the LCEs with isobutyl groups, which resulted in a tighter molecular packing and reduced the free volume. Our results suggest a facile and effective method for synthesizing LCEs with tailored mechanical and actuation properties by the choice of chain extenders, which may advance the development of soft actuators for a variety of applications in aerospace, medicine, and optics.
Collapse
Affiliation(s)
- Yoojin Lee
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea; (Y.L.); (S.C.)
| | - Subi Choi
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea; (Y.L.); (S.C.)
| | - Beom-Goo Kang
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Korea
| | - Suk-kyun Ahn
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea; (Y.L.); (S.C.)
| |
Collapse
|