1
|
Kwon Y, Jeon W, Gierschner J, Kwon MS. Organic Photocatalyst Utilizing Triplet Excited States for Highly Efficient Visible-Light-Driven Polymerizations. Acc Chem Res 2025; 58:1581-1595. [PMID: 40310755 PMCID: PMC12096438 DOI: 10.1021/acs.accounts.4c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/03/2025]
Abstract
ConspectusUltraviolet (UV) light has traditionally been used to drive photochemical organic transformations, mainly due to the limited visible-light absorption of most organic molecules. However, the high energy associated with UV light often causes undesirable side reactions. In the late 2000s, MacMillan, Yoon, and Stephenson pioneered the use of visible light in conjunction with photocatalysts (PCs) to initiate organic transformations. This innovative approach overcame the limitations of UV light by utilizing visible-light-absorbing PCs in their photoexcited states for electron or energy transfer, generating reactive radical species and promoting the photoreactions. Furthermore, while the photocatalysis has predominantly relied on transition-metal complexes, concerns over the potential toxicity, cost, and sustainability of these metals have driven the development of organic PCs. These organic PCs eliminate the need for metal removal, offer structural diversity, and enable tuning of their properties, thus paving the way for the creation of a tailored library of PCs.In recent decades, significant advancements have been made in the development of novel organic PCs with diverse scaffolds, with a notable example being the work of Zhang et al. in 2016. They demonstrated that cyanoarene analogues, originally developed by Adachi et al. for thermally activated delayed fluorescence (TADF) in organic light-emitting diodes, could function effectively as PCs. Building on these insights, we developed a PC design platform featuring TADF compounds with twisted donor-acceptor structures, which paved the way for new PC discoveries. We showcased these PCs' ability (i) to generate long-lived lowest triplet excited (T1) states and (ii) to tune redox potentials by independently modifying donor and acceptor moieties. Through this platform, we discovered PCs with varying redox potentials and the capability to effectively populate T1 states, establishing structure-property relationships within our PC library and creating PC selection criteria for targeted reactions. Specifically, we tailored PCs for highly efficient reversible-deactivation radical polymerizations, including organocatalyzed atom transfer radical polymerization, photoinduced electron/energy transfer reversible addition-fragmentation chain transfer polymerization, and atom transfer radical polymerization with dual photoredox/copper catalysis as well as rapid free radical polymerizations. These advancements have also facilitated the development of functionalized, visible-light-cured adhesives for advanced display technologies. Furthermore, we investigated the origins of the exceptional catalytic performance of these PCs through comprehensive mechanistic studies, including electrochemical and photophysical measurements, quantum chemical calculations, and kinetics simulations. Specifically, we studied the formation and degradation of key PC intermediates in photocatalytic dehalogenations of alkyl and aryl halides. Our findings revealed a distinctive photodegradation pattern in the cyanoarene-based PCs, which significantly impact their catalytic efficiency in the reaction. Additionally, this discovery led us to introduce a concept of beneficial PC degradation for the first time.Over the past decades, organic photocatalysis based on the T1 state has become central to polymerization and organic synthesis. Utilizing our PC design platform, we have developed novel PCs and catalytic systems that enhance the overall efficiency of various organic transformations. In this overview of our contributions to visible-light-driven organic photocatalysis, we highlight the role of the T1 state in broadening applications through mechanistic analysis, enabling more sustainable transformations.
Collapse
Affiliation(s)
- Yonghwan Kwon
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul08826, Republic of Korea
| | - Woojin Jeon
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul08826, Republic of Korea
| | - Johannes Gierschner
- Madrid
Institute for Advanced Studies, IMDEA Nanociencia, Calle Faraday 9, Campus Cantoblanco, 28049Madrid, Spain
| | - Min Sang Kwon
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
2
|
Zhang Y, Wang H, Jiang D, Sun N, He W, Zhao L, Qin N, Zhu N, Fang Z, Guo K. Photomediated core modification of diaryl dihydrophenzines through three-component alkylarylation of alkenes toward organocatalyzed ATRP. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
3
|
|
4
|
Grishin ID. New Approaches to Atom Transfer Radical Polymerization and Their Realization in the Synthesis of Functional Polymers and Hybrid Macromolecular Structures. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222700035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Cunningham MF, Jessop PG. Carbon Dioxide Switchable Polymers – Recent Developments and Emerging Applications. MACROMOL REACT ENG 2022. [DOI: 10.1002/mren.202200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michael F. Cunningham
- Department of Chemical Engineering 19 Division Street Queen's University Kingston ON K7L 3N6 Canada
- Department of Chemistry 90 Bader Lane Queen's University Kingston ON K7L 3N6 Canada
| | - Philip G. Jessop
- Department of Chemistry 90 Bader Lane Queen's University Kingston ON K7L 3N6 Canada
| |
Collapse
|
6
|
Corbin DA, Miyake GM. Photoinduced Organocatalyzed Atom Transfer Radical Polymerization (O-ATRP): Precision Polymer Synthesis Using Organic Photoredox Catalysis. Chem Rev 2022; 122:1830-1874. [PMID: 34842426 PMCID: PMC9815475 DOI: 10.1021/acs.chemrev.1c00603] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The development of photoinduced organocatalyzed atom transfer radical polymerization (O-ATRP) has received considerable attention since its introduction in 2014. Expanding on many of the advantages of traditional ATRP, O-ATRP allows well-defined polymers to be produced under mild reaction conditions using organic photoredox catalysts. As a result, O-ATRP has opened access to a range of sensitive applications where the use of a metal catalyst could be of concern, such as electronics, certain biological applications, and the polymerization of coordinating monomers. However, key limitations of this method remain and necessitate further investigation to continue the development of this field. As such, this review details the achievements made to-date as well as future research directions that will continue to expand the capabilities and application landscape of O-ATRP.
Collapse
|
7
|
Soly S, Mistry B, Murthy CN. Photo‐mediated metal‐free atom transfer radical polymerization: recent advances in organocatalysts and perfection towards polymer synthesis. POLYM INT 2021. [DOI: 10.1002/pi.6336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sneha Soly
- Macromolecular Materials Laboratory, Applied Chemistry Department, Faculty of Technology and Engineering The Maharaja Sayajirao University of Baroda Vadodara 390001 India
| | - Bhavita Mistry
- Macromolecular Materials Laboratory, Applied Chemistry Department, Faculty of Technology and Engineering The Maharaja Sayajirao University of Baroda Vadodara 390001 India
| | - CN Murthy
- Macromolecular Materials Laboratory, Applied Chemistry Department, Faculty of Technology and Engineering The Maharaja Sayajirao University of Baroda Vadodara 390001 India
| |
Collapse
|
8
|
Tong Y, Liu Y, Chen Q, Mo Y, Ma Y. Long-Lived Triplet Excited-State Bichromophoric Iridium Photocatalysts for Controlled Photo-Mediated Atom-Transfer Radical Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yujie Tong
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yiming Liu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Qi Chen
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yitian Mo
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
de Ávila Gonçalves S, R Rodrigues P, Pioli Vieira R. Metal-Free Organocatalyzed Atom Transfer Radical Polymerization: Synthesis, Applications, and Future Perspectives. Macromol Rapid Commun 2021; 42:e2100221. [PMID: 34223686 DOI: 10.1002/marc.202100221] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/18/2021] [Indexed: 12/17/2022]
Abstract
Reversible deactivation radical polymerization (RDRP) is a class of powerful techniques capable of synthesizing polymers with a well-defined structure, properties, and functionalities. Among the available RDRPs, ATRP is the most investigated. However, the necessity of a metal catalyst represents a drawback and limits its use for some applications. O-ATRP emerged as an alternative to traditional ATRP that uses organic compounds that catalyze polymerization under light irradiation instead of metal. The friendly nature and the robustness of O-ATRP allow its use in the synthesis of tailorable advanced materials with unique properties. In this review, the fundamental aspects of the reductive and oxidative quenching mechanism of O-ATRP are provided, as well as insights into each component and its role in the reaction. Besides, the breakthrough recent studies that applied O-ATRP for the synthesis of functional materials are presented, which illustrate the significant potential and impact of this technique across diverse fields.
Collapse
Affiliation(s)
- Sayeny de Ávila Gonçalves
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, 13083-852, Brazil
| | - Plínio R Rodrigues
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, 13083-852, Brazil
| | - Roniérik Pioli Vieira
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, 13083-852, Brazil
| |
Collapse
|
10
|
Zhu Z, Huang X, Hou Q, Sun Z, Su X, Quan H. Low‐Molecular‐Weight
Polymer with
CO
2
‐Switchable
Surface Activity. J SURFACTANTS DETERG 2021. [DOI: 10.1002/jsde.12533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhuoyan Zhu
- Research Institute of Petroleum Exploration and Development PetroChina Beijing 100083 China
| | - Xiaoling Huang
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Qingfeng Hou
- Research Institute of Petroleum Exploration and Development PetroChina Beijing 100083 China
| | - Zhitao Sun
- School of Chemical & Environmental Engineering China University of Mining and Technology Beijing 100083 China
| | - Xin Su
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Hongping Quan
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, School of Chemistry and Chemical Engineering Southwest Petroleum University Xindu 610500 China
| |
Collapse
|
11
|
Corbin DA, Puffer KO, Chism KA, Cole JP, Theriot JC, McCarthy BG, Buss BL, Lim CH, Lincoln SR, Newell BS, Miyake GM. Radical Addition to N, N-Diaryl Dihydrophenazine Photoredox Catalysts and Implications in Photoinduced Organocatalyzed Atom Transfer Radical Polymerization. Macromolecules 2021; 54:4507-4516. [PMID: 34483366 PMCID: PMC8411832 DOI: 10.1021/acs.macromol.1c00501] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Photoinduced organocatalyzed atom transfer radical polymerization (O-ATRP) is a controlled radical polymerization methodology catalyzed by organic photoredox catalysts (PCs). In an efficient O-ATRP system, good control over molecular weight with an initiator efficiency (I* = M n,theo/M n,exp × 100%) near unity is achieved, and the synthesized polymers possess a low dispersity (Đ). N,N-Diaryl dihydrophenazine catalysts typically produce polymers with low dispersity (Đ < 1.3) but with less than unity molecular weight control (I* ~ 60-80%). This work explores the termination reactions that lead to decreased control over polymer molecular weight and identifies a reaction leading to radical addition to the phenazine core. This reaction can occur with radicals generated through reduction of the ATRP initiator or the polymer chain end. In addition to causing a decrease in I*, this reactivity modifies the properties of the PC, ultimately impacting polymerization control in O-ATRP. With this insight in mind, a new family of core-substituted N,N-diaryl dihydrophenazines is synthesized from commercially available ATRP initiators and employed in O-ATRP. These new core-substituted PCs improve both I* and Đ in the O-ATRP of MMA, while minimizing undesired side reactions during the polymerization. Further, the ability of one core-substituted PC to operate at low catalyst loadings is demonstrated, with minimal loss of polymerization control down to 100 ppm (weight average molecular weight [M w] = 10.8 kDa, Đ = 1.17, I* = 104% vs M w = 8.26, Đ = 1.10, I* = 107% at 1000 ppm) and signs of a controlled polymerization down to 10 ppm of the catalyst (M w = 12.1 kDa, Đ = 1.36, I* = 107%).
Collapse
Affiliation(s)
- Daniel A Corbin
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Katherine O Puffer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Katherine A Chism
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Justin P Cole
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jordan C Theriot
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Blaine G McCarthy
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Bonnie L Buss
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | | - Sarah R Lincoln
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Brian S Newell
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Garret M Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
12
|
Corbin DA, McCarthy BG, van de Lindt Z, Miyake GM. Radical Cations of Phenoxazine and Dihydrophenazine Photoredox Catalysts and Their Role as Deactivators in Organocatalyzed Atom Transfer Radical Polymerization. Macromolecules 2021; 54:4726-4738. [PMID: 34483367 PMCID: PMC8411649 DOI: 10.1021/acs.macromol.1c00640] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Radical cations of photoredox catalysts used in organocatalyzed atom transfer radical polymerization (O-ATRP) have been synthesized and investigated to gain insight into deactivation in O-ATRP. The stability and reactivity of these compounds were studied in two solvents, N,N-dimethylacetamide and ethyl acetate, to identify possible side reactions in O-ATRP and to investigate the ability of these radical cations to deactivate alkyl radicals. A number of other factors that could influence deactivation in O-ATRP were also probed, such as ion pairing with the radical cations, radical cation oxidation potential, and halide oxidation potential. Ultimately, these studies enabled radical cations to be employed as reagents during O-ATRP to demonstrate improvements in polymerization control with increasing radical cation concentrations. In the polymerization of acrylates, this approach enabled superior molecular weight control, a decrease in polymer dispersity from 1.90 to 1.44, and an increase in initiator efficiency from 78 to 102%. This work highlights the importance of understanding the mechanism and side reactions of O-ATRP, as well as the importance of catalyst radical cations for successful O-ATRP.
Collapse
Affiliation(s)
- Daniel A Corbin
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Blaine G McCarthy
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Zach van de Lindt
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Garret M Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
13
|
Swisher NA, Corbin DA, Miyake GM. Synthesis, Characterization, and Reactivity of N-Alkyl Phenoxazines in Organocatalyzed Atom Transfer Radical Polymerization. ACS Macro Lett 2021; 10:453-459. [PMID: 34306819 DOI: 10.1021/acsmacrolett.1c00055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Core-modified N-alkyl phenoxazines were synthesized and evaluated as photoredox catalysts (PCs) in organocatalyzed atom transfer radical polymerization (O-ATRP). Each PC was characterized and found to strongly absorb UVA and visible light, undergo reversible oxidation to radical cation species, and exhibit high quantum yields of fluorescence (Φf > 77%). PCs found to exhibit intramolecular charge transfer in their excited state were capable of the controlled synthesis of poly(methyl methacrylate) with good molecular weight control (I* ~ 100%) and moderately low dispersity (Đ < 1.30).
Collapse
Affiliation(s)
- Nicholas A. Swisher
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Daniel A. Corbin
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Garret M. Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
14
|
Wang Y, Li H, Dong J, Hu L, Wei D, Bai L, Yang H, Chen H. Recyclable Bio‐Based Photoredox Catalyst in Metal‐Free Atom Transfer Radical Polymerization. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yanan Wang
- School of Chemistry and Materials Science Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites Ludong University Yantai 264025 China
| | - Huili Li
- School of Chemistry and Materials Science Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites Ludong University Yantai 264025 China
| | - Jinhuan Dong
- College of Chemistry Chemical Engineering and Materials Science Shandong Normal University Jinan 250014 China
| | - Lijun Hu
- School of Chemistry and Materials Science Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites Ludong University Yantai 264025 China
| | - Donglei Wei
- School of Chemistry and Materials Science Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites Ludong University Yantai 264025 China
| | - Liangjiu Bai
- School of Chemistry and Materials Science Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites Ludong University Yantai 264025 China
| | - Huawei Yang
- School of Chemistry and Materials Science Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites Ludong University Yantai 264025 China
| | - Hou Chen
- School of Chemistry and Materials Science Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites Ludong University Yantai 264025 China
| |
Collapse
|
15
|
Dehkordi TF, Shirin-Abadi AR, Karimipour K, Mahdavian AR. CO2-, electric potential-, and photo-switchable-hydrophilicity membrane (x-SHM) as an efficient color-changeable tool for oil/water separation. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123250] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
|
17
|
Wang X, Qiao X, Yin X, Cui Z, Fu P, Liu M, Wang G, Pan X, Pang X. Visualization of Atom Transfer Radical Polymerization by Aggregation-Induced Emission Technology. Chem Asian J 2020; 15:1014-1017. [PMID: 32012458 DOI: 10.1002/asia.202000071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 01/21/2023]
Abstract
Aggregation-induced emission (AIE) technology has been demonstrated to be a facile approach for in-situ monitoring atom transfer radical polymerization (ATRP). A series of tertraphenyl ethylene (TPE)-containing α-bromo compounds were synthesized and applied as ATRP initiators. The photoluminescent (PL) emission of the polymerization system is proved to be sensitive to the local viscosity owing to the AIE characteristics of TPE. Linear relationships between the resulting molecular weight Mn and PL intensity were observed in several polymerization systems with different monomers, indicating the variability of this technique. Compared to physical blending, the chemical bonding of the TPE group in the chain end has higher sensitivity and accuracy to the polymer segments and the surrounding environment. This work promoted the combination of the AIE technique and controlled living radical polymerization, and introduced such an optical research platform to the ATRP polymerization process.
Collapse
Affiliation(s)
- Xin Wang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, No.100 of Kexue Avenue, Zhengzhou, 450001, China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, No.100 of Kexue Avenue, Zhengzhou, 450001, China
| | - Xiuzhe Yin
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, No.100 of Kexue Avenue, Zhengzhou, 450001, China
| | - Zhe Cui
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, No.100 of Kexue Avenue, Zhengzhou, 450001, China
| | - Peng Fu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, No.100 of Kexue Avenue, Zhengzhou, 450001, China
| | - Minying Liu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, No.100 of Kexue Avenue, Zhengzhou, 450001, China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, No.100 of Kexue Avenue, Zhengzhou, 450001, China
| |
Collapse
|
18
|
Zhou YN, Li JJ, Wu YY, Luo ZH. Role of External Field in Polymerization: Mechanism and Kinetics. Chem Rev 2020; 120:2950-3048. [PMID: 32083844 DOI: 10.1021/acs.chemrev.9b00744] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The past decades have witnessed an increasing interest in developing advanced polymerization techniques subjected to external fields. Various physical modulations, such as temperature, light, electricity, magnetic field, ultrasound, and microwave irradiation, are noninvasive means, having superb but distinct abilities to regulate polymerizations in terms of process intensification and spatial and temporal controls. Gas as an emerging regulator plays a distinctive role in controlling polymerization and resembles a physical regulator in some cases. This review provides a systematic overview of seven types of external-field-regulated polymerizations, ranging from chain-growth to step-growth polymerization. A detailed account of the relevant mechanism and kinetics is provided to better understand the role of each external field in polymerization. In addition, given the crucial role of modeling and simulation in mechanisms and kinetics investigation, an overview of model construction and typical numerical methods used in this field as well as highlights of the interaction between experiment and simulation toward kinetics in the existing systems are given. At the end, limitations and future perspectives for this field are critically discussed. This state-of-the-art research progress not only provides the fundamental principles underlying external-field-regulated polymerizations but also stimulates new development of advanced polymerization methods.
Collapse
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi-Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|