1
|
Pradhan T, Chelike DK, Roy D, Pramanik T, Dolui S. Stimuli-Responsive Multiacceptor Conjugated Polymers: Recent Trend and Future Direction. ACS POLYMERS AU 2025; 5:62-79. [PMID: 40226348 PMCID: PMC11986728 DOI: 10.1021/acspolymersau.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/09/2024] [Accepted: 01/03/2025] [Indexed: 04/15/2025]
Abstract
Apart from the visual effects, geometric shapes of materials play an important role in their engineering and biomedical applications. Responsive materials-based patient-specific anatomical models provide better insights into the structure and pathology. Polymers are by far the most utilized class of materials for advanced science and technology. Because of these properties, these polymers have been used as functional coatings, thermoplastics, biomedical materials, separators, and binders for Li-ion batteries, fuel cell membranes, piezoelectric devices, high-quality wires and cables, and so on. Reactive to stimuli because of their unusual electrical characteristics and adaptability, stimuli-responsive multiacceptor conjugated polymers have been a prominent focus of materials science study. These polymers combine several electron-accepting units inside their conjugated backbone, resulting in increased functionality and responsiveness to a variety of stimuli. The production, workings, and wide range of applications of stimuli-responsive multiacceptor conjugated polymers are the focus of this review.
Collapse
Affiliation(s)
- Tamanna Pradhan
- Department
of Chemistry, Indian Institute of Technology
Kharagpur, Kharagpur, West Bengal 721302, India
| | - Dinesh Kumar Chelike
- Department
of Chemistry, Rungta College of Engineering
& Technology Bhilai, Kohka, Durg, Chhattisgarh 490024, India
| | - Debarshi Roy
- Jay
FineChem Pvt. Ltd., Vapi, Gujarat 396191, India
| | - Tanay Pramanik
- Department
of Chemistry, Institute of Engineering and Management, University of Engineering and Management Kolkata, University Area, Action area 3,
Newtown, Kolkata 700160, India
| | - Subrata Dolui
- Graduate
School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-4-1, Higashihiroshima 739-8527, Japan
| |
Collapse
|
2
|
Zhuo Z, Ni M, Yu N, Zheng Y, Lin Y, Yang J, Sun L, Wang L, Bai L, Chen W, Xu M, Huo F, Lin J, Feng Q, Huang W. Intrinsically stretchable fully π-conjugated polymer film via fluid conjugated molecular external-plasticizing for flexible light-emitting diodes. Nat Commun 2024; 15:7990. [PMID: 39266527 PMCID: PMC11393078 DOI: 10.1038/s41467-024-50358-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/08/2024] [Indexed: 09/14/2024] Open
Abstract
Fully π-conjugated polymers with rigid aromatic units are promising for flexible optoelectronic devices, but their inherent brittleness poses a challenge for achieving high-performance, intrinsically stretchable fully π-conjugated polymer. Here, we are establishing an external-plasticizing strategy using semiconductor fluid plasticizers (Z1 and Z2) to enhance the optoelectronic, morphological, and stretchable properties of fully π-conjugated polymer films for flexible light-emitting diodes. The synergistic effect of hierarchical structure and optoelectronic properties of Z1 in poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) (F8BT) films enable excellent stretchable deformability (~25%) and good conductivity. PLEDs based on F8BT/Z1 films show stable electroluminescence and efficiency under 15% stretch and 100 cycles at 10% strain, revealing outstanding stress tolerance. This strategy is also improving the stretchable properties of polymers like poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) and poly(2-methoxy-5(2'-ethyl)hexoxy-phenylenevinylene) (Super Yellow), demonstrating its general applicability. Therefore, this strategy can provide effective guidance for designing high-performance stretchable fully π-conjugated polymers films for flexible electronic devices.
Collapse
Affiliation(s)
- Zhiqiang Zhuo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Mingjian Ni
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Ningning Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Yingying Zheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Yingru Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Jing Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Lili Sun
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Shenzhen, China
| | - Lizhi Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Lubing Bai
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Wenyu Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China.
| | - Quanyou Feng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China.
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China.
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Shenzhen, China.
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China.
| |
Collapse
|
3
|
Wang Y, Li Z, Niu K, Xia W, Giuntoli A. A Molecular Dynamics Study of Mechanical and Conformational Properties of Conjugated Polymer Thin Films. Macromolecules 2024; 57:5130-5142. [PMID: 38882199 PMCID: PMC11171455 DOI: 10.1021/acs.macromol.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/24/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024]
Abstract
Understanding and predicting the mechanical and conformational properties of conjugated polymer (CP) thin films are a central focus in flexible electronic device research. Employing molecular dynamics simulations with an architecture-transferable chemistry-specific coarse-grained (CG) model of poly(3-alkylthiophene)s (P3ATs), developed by using an energy renormalization approach, we investigate the mechanical and conformational behavior of P3AT thin films during deformation. The density profiles and measures of local mobility identify a softer interfacial layer for all films, the thickness of which does not depend on M w or side-chain length. Remarkably, Young's modulus measured via nanoindentation is more sensitive to M w than for tensile tests, which we attribute to distinct deformation mechanisms. High-M w thin films show increased toughness, whereas longer side-chain lengths of P3AT resulted in lower Young's modulus. Fractures in low-M w thin films occur through chain pullout due to insufficient chain entanglement and crazing in the plastic region. Importantly, stretching promoted both chain alignment and longer conjugation lengths of P3AT, potentially enhancing its electronic properties. For instance, at room temperature, stretching P3HT thin films to 150% increases the conjugated length of P3HT thin films from 2.7 nm to 4.7 nm, aligning with previous experimental findings and all-atom simulation results. Furthermore, high-M w thin films display elevated friction forces due to the chain accumulation on the indenter, with negligible variations in the friction coefficient across all thin film systems. These findings offer valuable insights that enhance our understanding and guide the rational design of CP thin films in flexible electronics.
Collapse
Affiliation(s)
- Yang Wang
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhaofan Li
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Kangmin Niu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenjie Xia
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Andrea Giuntoli
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
4
|
Pollit AA, Garg G, Tahir MN, Nyayachavadi A, Xiang P, Landry E, Ebied A, Rondeau-Gagné S. Supramolecular complexation of C 60 with branched polyethylene. Phys Chem Chem Phys 2024; 26:11073-11077. [PMID: 38529757 DOI: 10.1039/d4cp00651h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Fullerene C60 is a ubiquitous material for application in organic electronics and nanotechnology, due to its desirable optoelectronic properties including good molecular orbital alignment with electron-rich donor materials, as well as high and isotropic charge carrier mobility. However, C60 possesses two limitations that hinder its integration into large-scale devices: (1) poor solubility in common organic solvents leading to expensive device processing, and (2) poor optical absorbance in the visible portion of the spectrum. Covalent functionalization has long been the standard for introducing structural tunability into molecular design, but non-covalent interactions have emerged as an alternative strategy to tailor C60-based materials, offering a versatile and tuneable alternative to novel functional materials and applications. In this work, we report a straightforward non-covalent functionalization of C60 with a branched polyethylene (BPE), which occurs spontaneously in dilute chloroform solution under ambient conditions. A detailed characterization strategy, based on UV-vis spectroscopy and size-exclusion chromatography was performed to verify and investigate the structure of the C60+BPE complex. Among others, our work reveals that the supramolecular complex has an order of magnitude higher molecular weight than its C60 and BPE constituents and points towards oxidation as the driving force behind complexation. The C60+BPE complex also possesses significantly broadened optical absorbance compared to unfunctionalized C60, extending further into the visible portion of the spectrum. This non-covalent approach presents an inexpensive route to address the shortcomings of C60 for electronic applications, situating the C60+BPE complex as a promising candidate for further investigation in organic electronic devices.
Collapse
Affiliation(s)
- Adam A Pollit
- Department of Chemistry and Biochemistry, University of Windsor, Essex Centre of Research (CORe), Windsor, Ontario, N9B 3P4, Canada.
- PolyAnalytik Inc., 700 Collip Circle, Suite 202, London, Ontario, N6G 4X8, Canada
| | - Garima Garg
- Department of Chemistry and Biochemistry, University of Windsor, Essex Centre of Research (CORe), Windsor, Ontario, N9B 3P4, Canada.
| | - M Nazir Tahir
- Department of Chemistry and Biochemistry, University of Windsor, Essex Centre of Research (CORe), Windsor, Ontario, N9B 3P4, Canada.
| | - Audithya Nyayachavadi
- Department of Chemistry and Biochemistry, University of Windsor, Essex Centre of Research (CORe), Windsor, Ontario, N9B 3P4, Canada.
| | - Peng Xiang
- PolyAnalytik Inc., 700 Collip Circle, Suite 202, London, Ontario, N6G 4X8, Canada
| | - Eric Landry
- PolyAnalytik Inc., 700 Collip Circle, Suite 202, London, Ontario, N6G 4X8, Canada
| | - Amer Ebied
- PolyAnalytik Inc., 700 Collip Circle, Suite 202, London, Ontario, N6G 4X8, Canada
| | - Simon Rondeau-Gagné
- Department of Chemistry and Biochemistry, University of Windsor, Essex Centre of Research (CORe), Windsor, Ontario, N9B 3P4, Canada.
| |
Collapse
|
5
|
Mone M, Kim Y, Darabi S, Zokaei S, Karlsson L, Craighero M, Fabiano S, Kroon R, Müller C. Mechanically Adaptive Mixed Ionic-Electronic Conductors Based on a Polar Polythiophene Reinforced with Cellulose Nanofibrils. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37262133 DOI: 10.1021/acsami.3c03962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Conjugated polymers with oligoether side chains are promising mixed ionic-electronic conductors, but they tend to feature a low glass transition temperature and hence a low elastic modulus, which prevents their use if mechanical robust materials are required. Carboxymethylated cellulose nanofibrils (CNF) are found to be a suitable reinforcing agent for a soft polythiophene with tetraethylene glycol side chains. Dry nanocomposites feature a Young's modulus of more than 400 MPa, which reversibly decreases to 10 MPa or less upon passive swelling through water uptake. The presence of CNF results in a slight decrease in electronic mobility but enhances the ionic mobility and volumetric capacitance, with the latter increasing from 164 to 197 F cm-3 upon the addition of 20 vol % CNF. Overall, organic electrochemical transistors (OECTs) feature a higher switching speed and a transconductance that is independent of the CNF content up to at least 20 vol % CNF. Hence, CNF-reinforced conjugated polymers with oligoether side chains facilitate the design of mechanically adaptive mixed ionic-electronic conductors for wearable electronics and bioelectronics.
Collapse
Affiliation(s)
- Mariza Mone
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Youngseok Kim
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Sozan Darabi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Sepideh Zokaei
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Lovisa Karlsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Mariavittoria Craighero
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, 602 21 Norrköping, Sweden
| | - Renee Kroon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, 602 21 Norrköping, Sweden
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
6
|
Prine N, Cao Z, Zhang S, Li T, Do C, Hong K, Cardinal C, Thornell TL, Morgan SE, Gu X. Enabling quantitative analysis of complex polymer blends by infrared nanospectroscopy and isotopic deuteration. NANOSCALE 2023; 15:7365-7373. [PMID: 37038929 DOI: 10.1039/d3nr00886j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Atomic-force microscopy coupled with infrared spectroscopy (AFM-IR) deciphers surface morphology of thin-film polymer blends and composites by simultaneously mapping physical topography and chemical composition. However, acquiring quantitative phase and composition information from multi-component blends can be challenging using AFM-IR due to the possible overlapping infrared absorption bands between different species. Isotope labeling one of the blend components introduces a new type of bond (carbon-deuterium vibration) that can be targeted using AFM-IR and responds at wavelengths sufficiently shifted toward unoccupied regions (around 2200 cm-1). In this project, AFM-IR was used to probe the surface morphology and chemical composition of three polymer blends containing deuterated polystyrene; each blend is expected to exhibit various degrees of miscibility. AFM-IR results successfully demonstrated that deuterium labeling prevents infrared spectral overlap and enables the visualization of blend phases that could not normally be distinguished by other scanning probe techniques. The nanoscale domain composition was resolved by fast infrared spectrum analysis. Overall, we presented isotope labeling as a robust approach for circumventing obstacles preventing the quantitative analysis of multiphase systems by AFM-IR.
Collapse
Affiliation(s)
- Nathaniel Prine
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA.
| | - Zhiqiang Cao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Song Zhang
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA.
| | - Tianyu Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Camille Cardinal
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA.
| | - Travis L Thornell
- U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi 39180, USA
| | - Sarah E Morgan
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA.
| | - Xiaodan Gu
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA.
| |
Collapse
|
7
|
Ding Y, Park J, Ikura R, Nara S, Toda K, Takashima Y. Cyclic Polyphenylene Sulfide as Additive to Improve the Mechanical Properties of Polystyrene-Based Materials. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Yuyang Ding
- Department of Macromolecular Science, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Ryohei Ikura
- Department of Macromolecular Science, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Saori Nara
- Processing Technical Division, DIC Corporation 12, Yawatakaigandori, Ichihara, Chiba 290-8585, Japan
| | - Kazuki Toda
- Processing Technical Division, DIC Corporation 12, Yawatakaigandori, Ichihara, Chiba 290-8585, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Institute for Advanced Co-Creation Studies, Osaka University 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Liu H, Liu D, Yang J, Gao H, Wu Y. Flexible Electronics Based on Organic Semiconductors: from Patterned Assembly to Integrated Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206938. [PMID: 36642796 DOI: 10.1002/smll.202206938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Organic flexible electronic devices are at the forefront of the electronics as they possess the potential to bring about a major lifestyle revolution owing to outstanding properties of organic semiconductors, including solution processability, lightweight and flexibility. For the integration of organic flexible electronics, the precise patterning and ordered assembly of organic semiconductors have attracted wide attention and gained rapid developments, which not only reduces the charge crosstalk between adjacent devices, but also enhances device uniformity and reproducibility. This review focuses on recent advances in the design, patterned assembly of organic semiconductors, and flexible electronic devices, especially for flexible organic field-effect transistors (FOFETs) and their multifunctional applications. First, typical organic semiconductor materials and material design methods are introduced. Based on these organic materials with not only superior mechanical properties but also high carrier mobility, patterned assembly strategies on flexible substrates, including one-step and two-step approaches are discussed. Advanced applications of flexible electronic devices based on organic semiconductor patterns are then highlighted. Finally, future challenges and possible directions in the field to motivate the development of the next generation of flexible electronics are proposed.
Collapse
Affiliation(s)
- Haoran Liu
- Ji Hua Laboratory, Foshan, Guangdong, 528000, P. R. China
| | - Dong Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Junchuan Yang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hanfei Gao
- Ji Hua Laboratory, Foshan, Guangdong, 528000, P. R. China
| | - Yuchen Wu
- Ji Hua Laboratory, Foshan, Guangdong, 528000, P. R. China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
9
|
Antoniuk ER, Li P, Kailkhura B, Hiszpanski AM. Representing Polymers as Periodic Graphs with Learned Descriptors for Accurate Polymer Property Predictions. J Chem Inf Model 2022; 62:5435-5445. [PMID: 36315033 DOI: 10.1021/acs.jcim.2c00875] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accurately predicting new polymers' properties with machine learning models apriori to synthesis has potential to significantly accelerate new polymers' discovery and development. However, accurately and efficiently capturing polymers' complex, periodic structures in machine learning models remains a grand challenge for the polymer cheminformatics community. Specifically, there has yet to be an ideal solution for the problems of how to capture the periodicity of polymers, as well as how to optimally develop polymer descriptors without requiring human-based feature design. In this work, we tackle these problems by utilizing a periodic polymer graph representation that accounts for polymers' periodicity and coupling it with a message-passing neural network that leverages the power of graph deep learning to automatically learn chemically relevant polymer descriptors. Remarkably, this approach achieves state-of-the-art performance on 8 out of 10 distinct polymer property prediction tasks. These results highlight the advancement in predictive capability that is possible through learning descriptors that are specifically optimized for capturing the unique chemical structure of polymers.
Collapse
Affiliation(s)
- Evan R Antoniuk
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California94550-5507, United States
| | - Peggy Li
- Global Security Computing Applications Division, Computing Directorate, Lawrence Livermore National Laboratory, Livermore, California94550-5507, United States
| | - Bhavya Kailkhura
- Machine Intelligence Group/Center for Applied Scientific Computing, Computing Directorate, Lawrence Livermore National Laboratory, Livermore, California94550-5507, United States
| | - Anna M Hiszpanski
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California94550-5507, United States
| |
Collapse
|
10
|
Zhang Q, Huang J, Wang K, Huang W. Recent Structural Engineering of Polymer Semiconductors Incorporating Hydrogen Bonds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110639. [PMID: 35261083 DOI: 10.1002/adma.202110639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Highly planar, extended π-electron organic conjugated polymers have been increasingly attractive for achieving high-mobility organic semiconductors. In addition to the conventional strategy to construct rigid backbone by covalent bonds, hydrogen bond has been employed extensively to increase the planarity and rigidity of polymer via intramolecular noncovalent interactions. This review provides a general summary of high-mobility semiconducting polymers incorporating hydrogen bonds in field-effect transistors over recent years. The structural engineering of the hydrogen bond-containing building blocks and the discussion of theoretical simulation, microstructural characterization, and device performance are covered. Additionally, the effects of the introduction of hydrogen bond on self-healing, stretchability, chemical sensitivity, and mechanical properties are also discussed. The review aims to help and inspire design of new high-mobility conjugated polymers with superiority of mechanical flexibility by incorporation of hydrogen bond for the application in flexible electronics.
Collapse
Affiliation(s)
- Qi Zhang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Jianyao Huang
- CAS key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Kai Wang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Wei Huang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| |
Collapse
|
11
|
Polyethylene and Semiconducting Polymer Blends for the Fabrication of Organic Field-Effect Transistors: Balancing Charge Transport and Stretchability. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polyethylene is amongst the most used polymers, finding a plethora of applications in our lives owing to its high impact resistance, non-corrosive nature, light weight, cost effectiveness, and easy processing into various shapes from different sizes. Despite these outstanding features, the commodity polymer has been underexplored in the field of organic electronics. This work focuses on the development of new polymer blends based on a low molecular weight linear polyethylene (LPE) derivative with a high-performance diketopyrrolopyrrole-based semiconducting polymer. Physical blending of the polyethylene with semiconducting polymers was performed at ratios varying from 0 to 75 wt.%, and the resulting blends were carefully characterized to reveal their electronic and solid-state properties. The new polymer blends were also characterized to reveal the influence of polyethylene on the mechanical robustness and stretchability of the semiconducting polymer. Overall, the introduction of LPE was shown to have little to no effect on the solid-state properties of the materials, despite some influence on solid-state morphology through phase separation. Organic field-effect transistors prepared from the new blends showed good device characteristics, even at higher ratios of polyethylene, with an average mobility of 0.151 cm2 V−1 s−1 at a 25 wt.% blend ratio. The addition of polyethylene was shown to have a plasticizing effect on the semiconducting polymers, helping to reduce crack width upon strain and contributing to devices accommodating more strain without suffering from decreased performance. The new blends presented in this work provide a novel platform from which to access more mechanically robust organic electronics and show promising features for the utilization of polyethylene for the solution processing of advanced semiconducting materials toward novel soft electronics and sensors.
Collapse
|
12
|
Properties of selenium nanoparticles stabilized by Lycium barbarum polysaccharide-protein conjugates obtained with subcritical water. Int J Biol Macromol 2022; 205:672-681. [PMID: 35240216 DOI: 10.1016/j.ijbiomac.2022.02.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 01/02/2023]
Abstract
Selenium nanoparticles (SeNPs) in an aqueous solution have poor stability and tend to aggregate when stored for a long time. In the present study, SeNPs were stabilized by using Lycium barbarum polysaccharide (LBP) and Lycium barbarum protein (LBPr) conjugates (LBPP) as a stabilizer and dispersing agent. Particularly, the LBPP1 was obtained with subcritical water treatment. In addition, the physical stability, re-dispersity and antitumor activity of LBPP1-SeNPs were investigated. The results showed the particle size of LBPP1-SeNPs was maintained at 111.5-117 nm, which was stable at PH 6, 4 °C and darkness for at least 40 days. Besides, the result of TEM showed that the dispersion of LBPP1-SeNPs had more clear layers and smoother surfaces. Moreover, LBPP1-SeNPs had excellent re-dispersibility and exhibited a significant inhibitory effect on HepG-2 cells and Caco-2 cells, respectively (p < 0.05). Therefore, LBPP1-SeNPs can be used as potential selenium nutritional supplements for food and medical applications.
Collapse
|
13
|
Zheng Y, Zhang S, Tok JBH, Bao Z. Molecular Design of Stretchable Polymer Semiconductors: Current Progress and Future Directions. J Am Chem Soc 2022; 144:4699-4715. [PMID: 35262336 DOI: 10.1021/jacs.2c00072] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Stretchable polymer semiconductors have advanced rapidly in the past decade as materials required to realize conformable and soft skin-like electronics become available. Through rational molecular-level design, stretchable polymer semiconductor films are now able to retain their electrical functionalities even when subjected to repeated mechanical deformations. Furthermore, their charge-carrier mobilities are on par with the best flexible polymer semiconductors, with some even exceeding that of amorphous silicon. The key advancements are molecular-design concepts that allow multiple strain energy-dissipation mechanisms, while maintaining efficient charge-transport pathways over multiple length scales. In this perspective article, we review recent approaches to confer stretchability to polymer semiconductors while maintaining high charge carrier mobilities, with emphasis on the control of both polymer-chain dynamics and thin-film morphology. Additionally, we present molecular design considerations toward intrinsically elastic semiconductors that are needed for reliable device operation under reversible and repeated deformation. A general approach involving inducing polymer semiconductor nanoconfinement allows for incorporation of several other desired functionalities, such as biodegradability, self-healing, and photopatternability, while enhancing the charge transport. Lastly, we point out future directions, including advancing the fundamental understanding of morphology evolution and its correlation with the change of charge transport under strain, and needs for strain-resilient polymer semiconductors with high mobility retention.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.,Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Song Zhang
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jeffrey B-H Tok
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
14
|
Liu D, Ding Z, Wu Y, Liu SF, Han Y, Zhao K. In Situ Study of Molecular Aggregation in Conjugated Polymer/Elastomer Blends toward Stretchable Electronics. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dongle Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Zicheng Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Yin Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| |
Collapse
|
15
|
Choudhary K, Chen AX, Pitch GM, Runser R, Urbina A, Dunn TJ, Kodur M, Kleinschmidt AT, Wang BG, Bunch JA, Fenning DP, Ayzner AL, Lipomi DJ. Comparison of the Mechanical Properties of a Conjugated Polymer Deposited Using Spin Coating, Interfacial Spreading, Solution Shearing, and Spray Coating. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51436-51446. [PMID: 34677936 DOI: 10.1021/acsami.1c13043] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The mechanical properties of π-conjugated (semiconducting) polymers are a key determinant of the stability and manufacturability of devices envisioned for applications in energy and healthcare. These properties─including modulus, extensibility, toughness, and strength─are influenced by the morphology of the solid film, which depends on the method of processing. To date, the majority of work done on the mechanical properties of semiconducting polymers has been performed on films deposited by spin coating, a process not amenable to the manufacturing of large-area films. Here, we compare the mechanical properties of thin films of regioregular poly(3-heptylthiophene) (P3HpT) produced by three scalable deposition processes─interfacial spreading, solution shearing, and spray coating─and spin coating (as a reference). Our results lead to four principal conclusions. (1) Spray-coated films have poor mechanical robustness due to defects and inhomogeneous thickness. (2) Sheared films show the highest modulus, strength, and toughness, likely resulting from a decrease in free volume. (3) Interfacially spread films show a lower modulus but greater fracture strain than spin-coated films. (4) The trends observed in the tensile behavior of films cast using different deposition processes held true for both P3HpT and poly(3-butylthiophene) (P3BT), an analogue with a higher glass transition temperature. Grazing incidence X-ray diffraction and ultraviolet-visible spectroscopy reveal many notable differences in the solid structures of P3HpT films generated by all four processes. While these morphological differences provide possible explanations for differences in the electronic properties (hole mobility), we find that the mechanical properties of the film are dominated by the free volume and surface topography. In field-effect transistors, spread films had mobilities more than 1 magnitude greater than any other films, likely due to a relatively high proportion of edge-on texturing and long coherence length in the crystalline domains. Overall, spread films offer the best combination of deformability and charge-transport properties.
Collapse
Affiliation(s)
- Kartik Choudhary
- Department of Nanoengineering and Chemical Engineering Program, University of California, San Diego, 9500 Gilman Dr. Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Alexander X Chen
- Department of Nanoengineering and Chemical Engineering Program, University of California, San Diego, 9500 Gilman Dr. Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Gregory M Pitch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Rory Runser
- Department of Nanoengineering and Chemical Engineering Program, University of California, San Diego, 9500 Gilman Dr. Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Armando Urbina
- Department of Nanoengineering and Chemical Engineering Program, University of California, San Diego, 9500 Gilman Dr. Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Tim J Dunn
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Moses Kodur
- Department of Nanoengineering and Chemical Engineering Program, University of California, San Diego, 9500 Gilman Dr. Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Andrew T Kleinschmidt
- Department of Nanoengineering and Chemical Engineering Program, University of California, San Diego, 9500 Gilman Dr. Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Benjamin G Wang
- Department of Nanoengineering and Chemical Engineering Program, University of California, San Diego, 9500 Gilman Dr. Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Jordan A Bunch
- Department of Nanoengineering and Chemical Engineering Program, University of California, San Diego, 9500 Gilman Dr. Mail Code 0448, La Jolla, California 92093-0448, United States
| | - David P Fenning
- Department of Nanoengineering and Chemical Engineering Program, University of California, San Diego, 9500 Gilman Dr. Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Alexander L Ayzner
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Darren J Lipomi
- Department of Nanoengineering and Chemical Engineering Program, University of California, San Diego, 9500 Gilman Dr. Mail Code 0448, La Jolla, California 92093-0448, United States
| |
Collapse
|
16
|
Zheng Y, Yu Z, Zhang S, Kong X, Michaels W, Wang W, Chen G, Liu D, Lai JC, Prine N, Zhang W, Nikzad S, Cooper CB, Zhong D, Mun J, Zhang Z, Kang J, Tok JBH, McCulloch I, Qin J, Gu X, Bao Z. A molecular design approach towards elastic and multifunctional polymer electronics. Nat Commun 2021; 12:5701. [PMID: 34588448 PMCID: PMC8481247 DOI: 10.1038/s41467-021-25719-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022] Open
Abstract
Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C-H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm2 V-1 s-1 after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Zhiao Yu
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Song Zhang
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesbury, MS, USA
| | - Xian Kong
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Wesley Michaels
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Weichen Wang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Gan Chen
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Deyu Liu
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Jian-Cheng Lai
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Nathaniel Prine
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesbury, MS, USA
| | - Weimin Zhang
- King Abdullah University of Science and Technology (KAUST), Kaust Solar Center (KSC), Thuwal, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Shayla Nikzad
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | | | - Donglai Zhong
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Jaewan Mun
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Zhitao Zhang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Jiheong Kang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jeffrey B-H Tok
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Iain McCulloch
- King Abdullah University of Science and Technology (KAUST), Kaust Solar Center (KSC), Thuwal, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Xiaodan Gu
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesbury, MS, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
Ding Y, Yuan Y, Wu N, Wang X, Zhang G, Qiu L. Intrinsically Stretchable n-Type Polymer Semiconductors through Side Chain Engineering. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00936] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yafei Ding
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Anhui Province Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
| | - Ye Yuan
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Anhui Province Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
| | - Ning Wu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Anhui Province Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Anhui Province Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
| | - Guobing Zhang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
18
|
Zhang S, Galuska LA, Gu X. Water‐assisted
mechanical testing of polymeric
thin‐films. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Song Zhang
- School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg Mississippi USA
| | - Luke A. Galuska
- School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg Mississippi USA
| | - Xiaodan Gu
- School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg Mississippi USA
| |
Collapse
|
19
|
Shao P, Yao R, Li G, Zhang M, Yuan S, Wang X, Zhu Y, Zhang X, Zhang L, Feng X, Wang B. Molecular‐Sieving Membrane by Partitioning the Channels in Ultrafiltration Membrane by In Situ Polymerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pengpeng Shao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Ruxin Yao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials Ministry of EducationSchool of Chemistry and Materials ScienceShanxi Normal University Linfen 041004 P. R. China
| | - Ge Li
- Engineering Research Center of Membrane and Water Treatment Technology of MOECollege of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 P. R. China
| | - Mengxi Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Shuai Yuan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Xiaoqi Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Yuhao Zhu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Xianming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials Ministry of EducationSchool of Chemistry and Materials ScienceShanxi Normal University Linfen 041004 P. R. China
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment Technology of MOECollege of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 P. R. China
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
20
|
Shao P, Yao R, Li G, Zhang M, Yuan S, Wang X, Zhu Y, Zhang X, Zhang L, Feng X, Wang B. Molecular‐Sieving Membrane by Partitioning the Channels in Ultrafiltration Membrane by In Situ Polymerization. Angew Chem Int Ed Engl 2020; 59:4401-4405. [DOI: 10.1002/anie.201913360] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/29/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Pengpeng Shao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Ruxin Yao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials Ministry of EducationSchool of Chemistry and Materials ScienceShanxi Normal University Linfen 041004 P. R. China
| | - Ge Li
- Engineering Research Center of Membrane and Water Treatment Technology of MOECollege of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 P. R. China
| | - Mengxi Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Shuai Yuan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Xiaoqi Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Yuhao Zhu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Xianming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials Ministry of EducationSchool of Chemistry and Materials ScienceShanxi Normal University Linfen 041004 P. R. China
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment Technology of MOECollege of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 P. R. China
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|