1
|
Si X, Zhang Y, Zhang X, Pan X, Wang F, Shao X, Yao Q, Duan W, Huang X, Su J. A Porous Carbazolic Al-MOF for Efficient Aerobic Photo-Oxidation of Sulfides into Sulfoxides under Air. Inorg Chem 2024; 63:4707-4715. [PMID: 38410082 DOI: 10.1021/acs.inorgchem.3c04359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A robust, microporous, and photoactive aluminum-based metal-organic framework (Al-MOF, LCU-600) has been assembled by an in situ-formed [Al3O(CO2)6] trinuclear building unit and a tritopic carbazole ligand. LCU-600 shows a high water stability and permanent porosity for N2 and CO2 adsorption. Notably, the incorporation of photoresponsive carbazole moieties into LCU-600 makes it a highly efficient and recyclable photocatalyst for aerobic photo-oxidation of sulfides into sulfoxides under an air atmosphere at room temperature. Mechanism investigations unveil that photogenerated holes (h+), superoxide radical anion (O2•-), and singlet oxygen (1O2) are critical active spices for the photo-oxidation reaction performed in an air atmosphere.
Collapse
Affiliation(s)
- Xuezhen Si
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Yanjun Zhang
- Luxi Chemical Group Co., Ltd., New Chemical Materials Industrial Park, Liaocheng 252000, P. R. China
| | - Xiaoying Zhang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Xuze Pan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Fudong Wang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Xiaodong Shao
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Qingxia Yao
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Wenzeng Duan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Jie Su
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
2
|
Mohan B, Shanmughan A, Krishna AV, Noushija MK, Umadevi D, Shanmugaraju S. Porous organic polymers-based fluorescent chemosensors for Fe(III) ions-a functional mimic of siderophores. Front Chem 2024; 12:1361796. [PMID: 38425658 PMCID: PMC10901996 DOI: 10.3389/fchem.2024.1361796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Extended organic polymers such as amorphous Covalent Organic Polymers (COPs) and crystalline Covalent Organic Frameworks (COFs) are emerging functional polymeric materials that have recently been shown promises as luminescent materials for chemosensing applications. A wide variety of luminescence COPs and COFs have been synthesized and successfully used as fluorescence-sensing materials for hazardous environmental pollutants and toxic contaminants. This review exemplifies various COPs and COFs-based fluorescence sensors for selective sensing of Fe(III) ions. The fluorescence sensors are sorted according to their structural features and each section provides a detailed discussion on the synthesis and fluorescence sensing ability of different COPs and COFs towards Fe(III) ions. Also, this review highlights the limitations of the existing organic polymer-based chemosensors and future perspectives on translating COPs and COFs-based fluorescence sensors for the practical detection of Fe(III) ions.
Collapse
Affiliation(s)
| | | | | | | | - Deivasigamani Umadevi
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, India
| | | |
Collapse
|
3
|
Wang Y, Deng Y, Xia H, Zhang R, Liu J, Zhang H, Sun Y, Zhang Z, Lu X. Superhydrophilic Triazine-Based Covalent Organic Frameworks via Post-Modification of FeOOH Clusters for Boosted Photocatalytic Performance. SMALL METHODS 2024; 8:e2300163. [PMID: 37316981 DOI: 10.1002/smtd.202300163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/01/2023] [Indexed: 06/16/2023]
Abstract
The triazine-based covalent organic frameworks (tCOF), an intriguing subtype of COFs, are expected as highly promising photocatalysts for various photocatalytic applications owing to their fully conjugated structures and nitrogen-rich skeletons. However, the inherent hydrophobicity and fast recombination of photoexcited electron-hole pairs are two main factors hindering the application of tCOF in practical photocatalytic reactions. Here, a post-synthetic modification strategy to fabricate superhydrophilic tCOF-based photocatalysts is demonstrated by in situ growing FeOOH clusters on TaTz COF (TaTz-FeOOH) for efficient photocatalytic oxidation of various organic pollutants. The strong polar FeOOH endows TaTz-FeOOH with good hydrophilic properties. The well-defined heterogeneous interface between FeOOH and TaTz allows the photoelectrons generated by TaTz to be consumed by Fe (III) to transform into Fe (II), synergistically promoting the separation of holes and the generation of free radicals. Compared with the unmodified TaTz, the optimized TaTz-FeOOH (1%) shows excellent photocatalytic performance, where the photocatalytic degrade rate (k) of rhodamine B is increased by about 12 times, and the degradation rate is maintained at 99% after 5 cycles, thus achieving efficient removal of quinolone antibiotics from water. This study provides a new avenue for the development of COF-based hydrophilic functional materials for a wide range of practical applications.
Collapse
Affiliation(s)
- Yue Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yang Deng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Hong Xia
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Jia Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yajing Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
4
|
López-Magano A, Daliran S, Oveisi AR, Mas-Ballesté R, Dhakshinamoorthy A, Alemán J, Garcia H, Luque R. Recent Advances in the Use of Covalent Organic Frameworks as Heterogenous Photocatalysts in Organic Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209475. [PMID: 36563668 DOI: 10.1002/adma.202209475] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Indexed: 06/16/2023]
Abstract
Organic photochemistry is intensely developed in the 1980s, in which the nature of excited electronic states and the energy and electron transfer processes are thoroughly studied and finally well-understood. This knowledge from molecular organic photochemistry can be transferred to the design of covalent organic frameworks (COFs) as active visible-light photocatalysts. COFs constitute a new class of crystalline porous materials with substantial application potentials. Featured with outstanding structural tunability, large porosity, high surface area, excellent stability, and unique photoelectronic properties, COFs are studied as potential candidates in various research areas (e.g., photocatalysis). This review aims to provide the state-of-the-art insights into the design of COF photocatalysts (pristine, functionalized, and hybrid COFs) for organic transformations. The catalytic reaction mechanism of COF-based photocatalysts and the influence of dimensionality and crystallinity on heterogenous photocatalysis performance are also discussed, followed by perspectives and prospects on the main challenges and opportunities in future research of COFs and COF-based photocatalysts.
Collapse
Affiliation(s)
- Alberto López-Magano
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Saba Daliran
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, 98615-538, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, 98615-538, Iran
| | - Rubén Mas-Ballesté
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Amarajothi Dhakshinamoorthy
- School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - José Alemán
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia, 46022, Spain
| | - Hermenegildo Garcia
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, Cordoba, E14014, Spain
- Department of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., Moscow, 117198, Russian Federation
| |
Collapse
|
5
|
Cooperative photocatalysis of dye–Ti-MCM-41 with trimethylamine for selective aerobic oxidation of sulfides illuminated by blue light. J Colloid Interface Sci 2023; 630:921-930. [DOI: 10.1016/j.jcis.2022.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/25/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
|
6
|
Wang J, Zhu W, Zhang Y, Yang X, Bai G, Zhang Q, Chen Y, Lan X. Structural Engineering of Donor−π–Acceptor Conjugated Polymers for Facilitating Charge Separation: A Dual-Functional Photocatalysis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Juan Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Wanbo Zhu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Yize Zhang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Xianheng Yang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Guoyi Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Qianfan Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
7
|
Deng Z, Zhao H, Cao X, Xiong S, Li G, Deng J, Yang H, Zhang W, Liu Q. Enhancing Built-in Electric Field via Molecular Dipole Control in Conjugated Microporous Polymers for Boosting Charge Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35745-35754. [PMID: 35914116 DOI: 10.1021/acsami.2c08747] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The built-in electric field (BEF) has been considered as the key kinetic factor for facilitating efficient photoinduced carrier separation and migration of polymeric photocatalysts. Enhancing the BEF of the polymers could enable a directional migration of the photogenerated carriers to accelerate photogenerated charge separation and thus boost photocatalytic performances. However, achieving this approach remains a formidable challenge, which has never been realized in conjugated microporous polymers (CMPs). Herein, we developed a molecular dipole control strategy to modulate the BEF in CMPs by varying the nature of the core. As a result, a series of CMPs with a tunable BEF were designed and prepared via FeCl3-mediated coupling of bicarbazole with different acceptor cores. The optimized CbzCMP-9 featured the strongest BEF induced by its high molecular dipole, which grants it with a powerful driving force to accelerate exciton dissociation into electron-hole pairs and facilitates charge transfer along the backbone of CMPs to the surface, resulting in a remarkable photocatalytic performance toward thiocyano chromones and C-3 thiocyanation of indoles (up to 95 and 98% yields, respectively) and prominently surpassing many other reported photocatalysts. In brief, the proposed strategy highlights that enhancing the BEF by modulating molecular dipole can lead to a dramatic improvement in photocatalytic performance, which is expected to be employed for constructing other photocatalytic systems with high performance.
Collapse
Affiliation(s)
- Zhaozhang Deng
- Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Hongwei Zhao
- Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xinxiu Cao
- Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shaohui Xiong
- Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Gen Li
- Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jiyong Deng
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Hai Yang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Weijie Zhang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Qingquan Liu
- Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
8
|
Shetty S, Baig N, Al‐Mousawi S, Alameddine B. Removal of anionic and cationic dyes using porous copolymer networks made from a
S
onogashira cross‐coupling reaction of diethynyl iron (
II
) clathrochelate with various arylamines. J Appl Polym Sci 2022. [DOI: 10.1002/app.52966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Suchetha Shetty
- Department of Mathematics and Natural Sciences Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
- Functional Materials Group Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
| | - Noorullah Baig
- Department of Mathematics and Natural Sciences Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
- Functional Materials Group Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
| | | | - Bassam Alameddine
- Department of Mathematics and Natural Sciences Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
- Functional Materials Group Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
| |
Collapse
|
9
|
Wang Y, Li X, Dong X, Zhang F, Lang X. Triazine-based two dimensional porous materials for visible light-mediated oxidation of sulfides to sulfoxides with O 2. J Colloid Interface Sci 2022; 616:846-857. [PMID: 35257934 DOI: 10.1016/j.jcis.2022.02.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 01/19/2023]
Abstract
Recently, triazine-based two dimensional (2D) porous materials have received increasing attention in photocatalysis. Herein, CTF-1, a covalent triazine framework, was adopted as the blueprint for designing a 2D bespoke photocatalyst. The thiazolo[5,4-d]thiazole (TzTz) linkage was inserted into the framework of CTF-1, affording TzTz-TA, which belongs to conjugated microporous polymers (CMPs). Rather than the direct insertion via the challenging CH activation, TzTz-TA was assembled from 2,4,6-tris(4-formylphenyl)-1,3,5-triazine and dithiooxamide, in which TzTz was formed in situ by a process of catalyst-free solvothermal condensation. Both CTF-1 and TzTz-TA had similar energy gaps (Eg), photocurrents, and charge carrier lifetimes, in line with the similar molecular underpinnings. However, the reduction potential of TzTz-TA is less negative than that of CTF-1 due to the insertion of TzTz linkage, in a more appropriate position for activating O2 to superoxide (O2•-). In return, blue light-mediated oxidation of sulfides to sulfoxides with O2 over TzTz-TA was accomplished with significantly superior conversions to those over CTF-1. Intriguingly, extensive sulfides could be oxidized to corresponding sulfoxides with outstanding recycling stability of TzTz-TA. Notably, attendance of an induction period was observed during TzTz-TA photocatalysis. This work highlights the vast potential of designing triazine-based porous materials to meet the tailor-made demands, such as the oxidative transformation of organic molecules with O2.
Collapse
Affiliation(s)
- Yuexin Wang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xia Li
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Dong
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fulin Zhang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
10
|
Dong X, Hao H, Zhang F, Lang X. Combining Brønsted base and photocatalysis into conjugated microporous polymers: Visible light-induced oxidation of thiols into disulfides with oxygen. J Colloid Interface Sci 2022; 622:1045-1053. [PMID: 35594638 DOI: 10.1016/j.jcis.2022.04.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 01/03/2023]
Abstract
Numerous applications in visible light photocatalysis have been found over conjugated microporous polymers (CMPs) whose function could be rationally designed at the molecular level. In this context, the oxidation of thiols into disulfides entails proton and electron transfer and thus requires both Brønsted base and photocatalysis, which could be both combined into CMPs. With carbazole as a Brønsted base and an electron donor, CMPs were constructed to implement the synergistic deprotonation and oxidation of thiols into disulfides in ethanol (C2H5OH). Gratifyingly, the bifunctional CMPs could activate molecular oxygen (O2) to superoxide anion (O2•-) and promote the blue light-induced selective oxidation of thiols into symmetrical disulfides with high efficiency in C2H5OH. More remarkably, the highly selective formation of unsymmetrical disulfides could also be achieved without adding a Brønsted base. This work highlights the feasibility of combining cooperative photocatalysis into CMPs for versatile chemical transformations.
Collapse
Affiliation(s)
- Xiaoyun Dong
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Huimin Hao
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fulin Zhang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
11
|
He J, Wang X, Jin S, Liu ZQ, Zhu M. 2D metal-free heterostructure of covalent triazine framework/g-C3N4 for enhanced photocatalytic CO2 reduction with high selectivity. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63936-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Triazine 2D Nanosheets as a New Class of Nanomaterials: Crystallinity, Properties and Applications. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Based on the recent (2015–2021) literature data, the authors analyze the mutual dependence of crystallinity/amorphism and specific surface area and porosity in covalent triazine frameworks (CTFs), taking into account thermodynamic and kinetic control in the synthesis of these 2D nanosheets. CTFs have now become a promising new class of high-performance porous organic materials. They can be recycled and reused easily, and thus have great potential as sustainable materials. For 2D CTFs, numerous examples are given to support the known rule that the structure and properties of any material with a given composition depend on the conditions of its synthesis. The review may be useful for elder students, postgraduate students, engineers and research fellows dealing with chemical synthesis and modern nanotechnologies based on 2D covalent triazine frameworks.
Collapse
|
13
|
|
14
|
Wang JH, Chang CL, Zhang ZW, EL-Mahdy AFM. Facile metal-free synthesis of pyrrolo[3,2- b]pyrrolyl-based conjugated microporous polymers for high-performance photocatalytic degradation of organic pollutants. Polym Chem 2022. [DOI: 10.1039/d2py00658h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient and metal-free approach to the synthesis of new kinds of CMPs (pyrrolo[3,2-b]pyrrolyl-based CMPs) on a gram scale within a short time has been developed for remarkable adsorbent and photocatalytic degradation of organic pollutants.
Collapse
Affiliation(s)
- Jing Han Wang
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Chih-Ling Chang
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Zhe Wei Zhang
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Ahmed F. M. EL-Mahdy
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
15
|
Oh M, Jo S, Huh TH, Kwark YJ, Lee TS. Synthesis of a conjugated polymer film via interfacial Knoevenagel polymerization and conversion to covalent triazine polymer for photocatalysis. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Gong CT, Xu GD, Chen LJ, Jia JH, Peng YW. Catalytic advanced oxidation processes (AOPS) in water treatment by covalent organic frameworks-based materials: a review. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04523-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Kundu S, Behera B, Giri A, Saha N, Patra A. N,N'-bicarbazole-benzothiadiazole-based conjugated porous organic polymer for reactive oxygen species generation in live cells. Chem Commun (Camb) 2021; 57:6875-6878. [PMID: 34151332 DOI: 10.1039/d1cc02352g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A π-conjugated porous organic polymer (BCzBz) was fabricated employing N,N'-bicarbazole and benzothiadiazole as molecular building units exhibiting broad visible light absorption. The photostable, water-dispersible, and cytocompatible BCzBz was demonstrated as an efficient probe for intracellular reactive oxygen species generation under photoirradiation.
Collapse
Affiliation(s)
- Subhankar Kundu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462066, Madhya Pradesh, India.
| | - Biswajit Behera
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462066, Madhya Pradesh, India.
| | - Arkaprabha Giri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462066, Madhya Pradesh, India.
| | - Nitu Saha
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462066, Madhya Pradesh, India.
| |
Collapse
|
18
|
Guan L, Cheng G, Tan B, Jin S. Covalent triazine frameworks constructed via benzyl halide monomers showing high photocatalytic activity in biomass reforming. Chem Commun (Camb) 2021; 57:5147-5150. [PMID: 33899846 DOI: 10.1039/d1cc01102b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here we report the synthesis of covalent triazine frameworks (CTFs) using benzyl halide monomers which are more cost-effective and with higher availability than previous ones. The resulting CTFs were successfully applied for efficient photocatalytic reforming of glucose for the first time, with a high hydrogen evolution rate up to 330 μmol g-1 h-1 under pH = 12. This work presented a new way to synthesize CTFs and further exhibited their potential applications in photocatalytic biomass reforming.
Collapse
Affiliation(s)
- Lijiang Guan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Guang Cheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Shangbin Jin
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China. and School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China
| |
Collapse
|
19
|
Mohamed MG, Chen TC, Kuo SW. Solid-State Chemical Transformations to Enhance Gas Capture in Benzoxazine-Linked Conjugated Microporous Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00736] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Tzu-Chun Chen
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
20
|
Yang G, Gao H, Li Q, Ren S. Preparation and dye adsorption properties of an oxygen-rich porous organic polymer. RSC Adv 2021; 11:15921-15926. [PMID: 35481178 PMCID: PMC9030378 DOI: 10.1039/d1ra01382c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022] Open
Abstract
Porous organic polymers (POPs), allowing fine synthetic control over their chemical structures, have shown great promise for addressing environmental issues. The high specific surface area and abundant porous structures of POPs can provide large storage space to adsorb dye molecules. Meanwhile, the introduction of polar groups, such as oxygen-containing functional groups in POPs, can not only improve the hydrophilicity, but also provide a strong interaction with dye molecules, thereby improving their adsorption performance. In this paper, an oxygen-rich porous polymer, POP-O, containing polar carbonyl and hydroxyl groups, was prepared by Sonogashira-Hagihara cross-coupling polycondensation. The characteristic results show that POP-O exhibits a hierarchical pore structure with a high specific surface area of 619 m2 g-1. The combination of abundant polar functional groups and high porosity endows POP-O with decent dye adsorption performance, and its theoretical maximum adsorption capacity for Rhodamine B (Rh B) is calculated to be 1012 mg g-1.
Collapse
Affiliation(s)
- Guang Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Huimin Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Qingyin Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Shijie Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 P. R. China
| |
Collapse
|
21
|
Zhang W, Deng J, Fang Z, Lan D, Liao Y, Zhou X, Liu Q. Promoting charge separation in donor–acceptor conjugated microporous polymers via cyanation for the photocatalytic reductive dehalogenation of chlorides. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01386f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Conjugated microporous polymers (CMPs) have emerged as promising heterogeneous photocatalysts for organic transformations owing to their structural designability and functional versatility.
Collapse
Affiliation(s)
- Weijie Zhang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, China
| | - Jiyong Deng
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Zhengjun Fang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Donghui Lan
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Yunfeng Liao
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Xiang Zhou
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Qingquan Liu
- Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
22
|
Xue R, Gou H, Zheng Y, Zhang L, Liu Y, Rao H, Zhao G. A New Squaraine‐Linked Triazinyl‐Based Covalent Organic Frameworks: Preparation, Characterization and Application for Sensitive and Selective Determination of Fe
3+
Cations. ChemistrySelect 2020. [DOI: 10.1002/slct.202002232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rui Xue
- School of Chemistry and Chemical Engineering Lanzhou City University, Lanzhou 730070 Gansu P. R. China
| | - Hao Gou
- School of Chemistry and Chemical Engineering Lanzhou City University, Lanzhou 730070 Gansu P. R. China
| | - Yanping Zheng
- School of Chemistry and Chemical Engineering Lanzhou City University, Lanzhou 730070 Gansu P. R. China
| | - Li Zhang
- School of Chemistry and Chemical Engineering Lanzhou City University, Lanzhou 730070 Gansu P. R. China
| | - Yinsheng Liu
- School of Chemistry and Chemical Engineering Lanzhou City University, Lanzhou 730070 Gansu P. R. China
| | - Honghong Rao
- School of Chemistry and Chemical Engineering Lanzhou City University, Lanzhou 730070 Gansu P. R. China
| | - Guohu Zhao
- School of Chemistry and Chemical Engineering Lanzhou City University, Lanzhou 730070 Gansu P. R. China
| |
Collapse
|
23
|
Li Q, Lan X, An G, Ricardez-Sandoval L, Wang Z, Bai G. Visible-Light-Responsive Anthraquinone Functionalized Covalent Organic Frameworks for Metal-Free Selective Oxidation of Sulfides: Effects of Morphology and Structure. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00290] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qing Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Weijin Road 92, Tianjin 300072, P. R. China
| | - Guangyu An
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Luis Ricardez-Sandoval
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Zhenguang Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Guoyi Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
24
|
Liu C, Li Y, Zhang M, Yuan K, Liang S, Yu G, Weng Z, Jian X. Hierarchical porous organic hyper-cross-linked polymers containing phthalazinone and carbazole moieties for gas uptake and fluorescence properties. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Mohamed MG, EL-Mahdy AFM, Takashi Y, Kuo SW. Ultrastable conductive microporous covalent triazine frameworks based on pyrene moieties provide high-performance CO2 uptake and supercapacitance. NEW J CHEM 2020. [DOI: 10.1039/d0nj01292k] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two pyrene-functionalized CTFs through ionothermal treatment TCNPy in the presence of molten zinc chloride at 500 °C, which displayed high-performance CO2 uptake and supercapacitance.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science
- Center of Crystal Research
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| | - Ahmed F. M. EL-Mahdy
- Department of Materials and Optoelectronic Science
- Center of Crystal Research
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| | - Yasuno Takashi
- Department of Materials and Optoelectronic Science
- Center of Crystal Research
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science
- Center of Crystal Research
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| |
Collapse
|