1
|
Hurst JM, Yadav R, Boeck PT, Ghiviriga I, Brantley CL, Dobrzycki Ł, Veige AS. Snapshot of cyclooctyne ring-opening to a tethered alkylidene cyclic polymer catalyst. Chem Sci 2024; 15:d4sc04411h. [PMID: 39282642 PMCID: PMC11391340 DOI: 10.1039/d4sc04411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Cyclooctyne reacts with the trianionic pincer ligand supported alkylidyne [ t BuOCO]WCC(CH3)3(THF)2 (1) to yield tungstacyclopropene (3) and tungstacyclopentadiene (4) complexes. The ratio of 3 and 4 in the reaction mixture depends on the stoichiometry of the reaction. The maximum concentration of 3 occurs with one equiv. of cyclooctyne and 4 is the exclusive product of the reaction above three equivalents. Both complexes 3 and 4 convert to the cyclooctyne ring-opened product 5 upon heating. While the conversion of 4 to 5 is accompanied by formation of polycyclooctyne as a white precipitate during the reaction, conversion of 3 to 5 is homogeneous. Exhibiting Ring Expansion Polymerization (REP), complexes 4 and 5 initiate the polymerization of phenylacetylene to generate cyclic poly(phenylacetylene) (c-PPA).
Collapse
Affiliation(s)
- Javier M Hurst
- University of Florida, Department of Chemistry, Center for Catalysis P.O. Box 117200 Gainesville FL 32611 USA
| | - Rinku Yadav
- University of Florida, Department of Chemistry, Center for Catalysis P.O. Box 117200 Gainesville FL 32611 USA
| | - Parker T Boeck
- University of Florida, Department of Chemistry, Center for Catalysis P.O. Box 117200 Gainesville FL 32611 USA
- University of Florida, Department of Chemistry, George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Sciences and Engineering Gainesville FL 32611 USA
| | - Ion Ghiviriga
- University of Florida, Department of Chemistry, Center for Catalysis P.O. Box 117200 Gainesville FL 32611 USA
- University of Florida, Department of Chemistry, George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Sciences and Engineering Gainesville FL 32611 USA
| | - ChristiAnna L Brantley
- University of Florida, Department of Chemistry, Center for Catalysis P.O. Box 117200 Gainesville FL 32611 USA
- University of Florida, Department of Chemistry, George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Sciences and Engineering Gainesville FL 32611 USA
| | - Łukasz Dobrzycki
- University of Florida, Department of Chemistry, Center for Catalysis P.O. Box 117200 Gainesville FL 32611 USA
- University of Florida, Department of Chemistry, George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Sciences and Engineering Gainesville FL 32611 USA
| | - Adam S Veige
- University of Florida, Department of Chemistry, Center for Catalysis P.O. Box 117200 Gainesville FL 32611 USA
- University of Florida, Department of Chemistry, George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Sciences and Engineering Gainesville FL 32611 USA
| |
Collapse
|
2
|
Fontelo R, Reis RL, Novoa-Carballal R, Pashkuleva I. Preparation, Properties, and Bioapplications of Block Copolymer Nanopatterns. Adv Healthc Mater 2024; 13:e2301810. [PMID: 37737834 DOI: 10.1002/adhm.202301810] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/28/2023] [Indexed: 09/23/2023]
Abstract
Block copolymer (BCP) self-assembly has emerged as a feasible method for large-scale fabrication with remarkable precision - features that are not common for most of the nanofabrication techniques. In this review, recent advancements in the molecular design of BCP along with state-of-the-art processing methodologies based on microphase separation alone or its combination with different lithography methods are presented. Furthermore, the bioapplications of the generated nanopatterns in the development of protein arrays, cell-selective surfaces, and antibacterial coatings are explored. Finally, the current challenges in the field are outlined and the potential breakthroughs that can be achieved by adopting BCP approaches already applied in the fabrication of electronic devices are discussed.
Collapse
Affiliation(s)
- Raul Fontelo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ramon Novoa-Carballal
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- CINBIO, University of Vigo, Campus Universitario de Vigo, Vigo, Pontevedra, 36310, Spain
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Beauchamp AM, Chakraborty J, Ghiviriga I, Abboud KA, Lester DW, Veige AS. Ring Expansion Alkyne Metathesis Polymerization. J Am Chem Soc 2023; 145:22796-22802. [PMID: 37812163 DOI: 10.1021/jacs.3c08717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The synthesis, characterization, and preliminary activity of an unprecedented tethered alkylidyne tungsten complex for ring expansion alkyne metathesis polymerization (REAMP) are reported. The tethered alkylidyne 7 is generated rapidly by combining alkylidyne W(CtBu)(CH2tBu)(O-2,6-i-Pr2C6H3)2 (6) with 1 equiv of an yne-ol proligand (5). Characterized by NMR studies and nuclear Overhauser effect spectroscopy, complex 7 is a dimer. Each metal center contains a tungsten-carbon triple bond tethered to the metal center via an alkoxide ligand. The polymerization of the strained cycloalkyne 3,8-didodecyloxy-5,6-dihydro-11,12-didehydrodibenzo[a,e]-[8]annulene, 8, to generate cyclic polymers was demonstrated. Size exclusion chromatography (SEC) and intrinsic viscosity (η) measurements confirm the polymer's cyclic topology.
Collapse
Affiliation(s)
- Andrew M Beauchamp
- Department of Chemistry, Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Jhonti Chakraborty
- Department of Chemistry, Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Department of Chemistry, Center for NMR Spectroscopy, University of Florida, Gainesville, Florida 32611, United States
| | - Khalil A Abboud
- Department of Chemistry, Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel W Lester
- Polymer Characterization Research Technology Platform, University of Warwick, Coventry CV4 7AL, U.K
| | - Adam S Veige
- Department of Chemistry, Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
4
|
Angelopoulou PP, Stathouraki MM, Keum JK, Hong K, Avgeropoulos A, Sakellariou G. Synthesis and morphological characterization of linear and miktoarm star poly(solketal methacrylate)-block-polystyrene copolymers. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Practical compatibility between self-consistent field theory and dissipative particle dynamics. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Angelopoulou PP, Moutsios I, Manesi GM, Ivanov DA, Sakellariou G, Avgeropoulos A. Designing high χ copolymer materials for nanotechnology applications: A systematic bulk vs. thin films approach. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Hagita K, Murashima T, Kawakatsu T. Lamellar Domain Spacing of Symmetric Linear, Ring, and Four-Arm-Star Block Copolymer Blends. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katsumi Hagita
- Department of Applied Physics, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka 239-8686, Japan
| | - Takahiro Murashima
- Department of Physics, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Toshihiro Kawakatsu
- Department of Physics, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
8
|
Rattanakawin P, Yoshimoto K, Hikima Y, Nagamine S, Jiang Y, Tosaka M, Yamago S, Ohshima M. Control of the Cell Structure of UV-Induced Chemically Blown Nanocellular Foams by Self-Assembled Block Copolymer Morphology. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Kenji Yoshimoto
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yuta Hikima
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Shinsuke Nagamine
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yuhan Jiang
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Masatoshi Tosaka
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Shigeru Yamago
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Masahiro Ohshima
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
9
|
Goodson AD, Rick MS, Troxler JE, Ashbaugh HS, Albert JNL. Blending Linear and Cyclic Block Copolymers to Manipulate Nanolithographic Feature Dimensions. ACS APPLIED POLYMER MATERIALS 2022; 4:327-337. [PMID: 35059643 PMCID: PMC8762643 DOI: 10.1021/acsapm.1c01313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Block copolymers (BCPs) consist of two or more covalently bound chemically distinct homopolymer blocks. These macromolecules have emerging applications in photonics, membrane separations, and nanolithography stemming from their self-assembly into regular nanoscale structures. Theory suggests that cyclic BCPs should form features up to 40% smaller than their linear analogs while also exhibiting superior thin-film stability and assembly dynamics. However, the complex syntheses required to produce cyclic polymers mean that a need for pure cyclic BCPs would present a challenge to large-scale manufacturing. Here, we employ dissipative particle dynamics simulations to probe the self-assembly behavior of cyclic/linear BCP blends, focusing on nanofeature size and interfacial width as these qualities are critical to nanopatterning applications. We find that for mixtures of symmetric cyclic and linear polymers with equivalent lengths, up to 10% synthetic impurity has a minimal impact on cyclic BCP feature dimensions and interfacial roughness. On the other hand, blending with cyclic BCPs provides a route to "fine-tune" linear BCP feature sizes. We analyze simulated blend domain spacings within the context of strong segregation theory and find significant deviations between simulation and theory that arise from molecular-level packing motifs not included in theory. These insights into blend self-assembly will assist experimentalists in rationally designing BCP materials for advanced nanolithography applications.
Collapse
Affiliation(s)
- Amy D. Goodson
- Department of Chemical and
Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Maxwell S. Rick
- Department of Chemical and
Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Jessie E. Troxler
- Department of Chemical and
Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Henry S. Ashbaugh
- Department of Chemical and
Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Julie N. L. Albert
- Department of Chemical and
Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
10
|
Buglakov AI, Vasilevskaya VV. Fibril Assembly and Gelation of Macromolecules with Amphiphilic Repeating Units. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12377-12387. [PMID: 34637315 DOI: 10.1021/acs.langmuir.1c01953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper reports the self-assembly of the fibrillar network in a concentrated solution of macromolecules with an amphiphilic structure of repeating units. The investigation of amphiphilic homopolymers and alternating copolymers with the linear and cyclic topologies, the solution with different polymer concentrations and solvent qualities, allows us to conclude that the ability to form a fibrillar gel with branched fibrils and regular subchain thickness is inherent for macromolecules with the solvophobic backbone and solvophilic pendants. The elements of the gel structure, such as the mesh size and fibrillar thickness, the number of cross-links, and their functionality, can be tuned and customized according to the requirements of their application. The results could be helpful for the directed design of the synthetic analogue of the relevant extracellular matrix, in tissue engineering, for fibrotic disease treatment and cell encapsulation.
Collapse
Affiliation(s)
- Aleksandr I Buglakov
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova ul., 28, Moscow 119991, Russia
- Faculty of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Valentina V Vasilevskaya
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova ul., 28, Moscow 119991, Russia
| |
Collapse
|
11
|
Baeza GP. Recent advances on the structure–properties relationship of multiblock copolymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Guilhem P. Baeza
- Univ. Lyon, INSA‐Lyon, CNRS, MATEIS, UMR 5510 Villeurbanne France
| |
Collapse
|
12
|
Herschberg T, Carrillo JMY, Sumpter BG, Panagiotou E, Kumar R. Topological Effects Near Order–Disorder Transitions in Symmetric Diblock Copolymer Melts. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tom Herschberg
- Department of Computer Science and Engineering, University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403, United States
| | - Jan-Michael Y. Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Eleni Panagiotou
- Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403, United States
| | - Rajeev Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
13
|
Hagita K, Aoyagi T, Abe Y, Genda S, Honda T. Deep learning-based estimation of Flory-Huggins parameter of A-B block copolymers from cross-sectional images of phase-separated structures. Sci Rep 2021; 11:12322. [PMID: 34112914 PMCID: PMC8192782 DOI: 10.1038/s41598-021-91761-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
In this study, deep learning (DL)-based estimation of the Flory-Huggins χ parameter of A-B diblock copolymers from two-dimensional cross-sectional images of three-dimensional (3D) phase-separated structures were investigated. 3D structures with random networks of phase-separated domains were generated from real-space self-consistent field simulations in the 25-40 χN range for chain lengths (N) of 20 and 40. To confirm that the prepared data can be discriminated using DL, image classification was performed using the VGG-16 network. We comprehensively investigated the performances of the learned networks in the regression problem. The generalization ability was evaluated from independent images with the unlearned χN. We found that, except for large χN values, the standard deviation values were approximately 0.1 and 0.5 for A-component fractions of 0.2 and 0.35, respectively. The images for larger χN values were more difficult to distinguish. In addition, the learning performances for the 4-class problem were comparable to those for the 8-class problem, except when the χN values were large. This information is useful for the analysis of real experimental image data, where the variation of samples is limited.
Collapse
Affiliation(s)
- Katsumi Hagita
- Department of Applied Physics, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, 239-8686, Japan.
| | - Takeshi Aoyagi
- Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology, Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | - Yuto Abe
- Department of Applied Physics, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, 239-8686, Japan
| | - Shinya Genda
- Department of Applied Physics, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, 239-8686, Japan
| | - Takashi Honda
- Zeon Corporation, 1-2-1 Yako, Kawasaki-ku, Kawasaki, 210-9507, Japan
| |
Collapse
|
14
|
Zhang J, Wu J, Jiang R, Wang Z, Yin Y, Li B, Wang Q. Lattice self-consistent field calculations of confined symmetric block copolymers of various chain architectures. SOFT MATTER 2020; 16:4311-4323. [PMID: 32315012 DOI: 10.1039/d0sm00293c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effects of chain architecture and confinement on the structure and orientation of lamellae formed by incompressible and symmetric AB-type block copolymer melts confined between two parallel and identical surfaces are investigated using self-consistent field calculations on a simple cubic lattice. Five systems of various chain architectures (linear, ring, and star) and lengths are studied, with their bulk lamellar period L0 chosen such that they have comparable L0/Rg, where Rg denotes the ideal-chain radius of gyration. For thin films of thickness D = L0 confined between two neutral surfaces, we define the rescaled volume fraction profiles of A, B, chain end, and joint segments in the parallel and perpendicular lamellae such that these profiles can be directly compared among the five systems to quantitatively reveal the interplay between the chain-end enrichment near confining surfaces and the surface-induced A-B compatibilization, and how such interplay is affected by the chain architectures (for example, the chain-crowding effects in the star block copolymers). The effects of D and surface preference for one of the blocks are also investigated.
Collapse
Affiliation(s)
- Jingxue Zhang
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| | | | | | | | | | | | | |
Collapse
|