1
|
Qian Y, Li W, Cheng Y, Zhang XT, Du FS, Li ZC. Highly Efficient Thiol-Michael Addition Post-Modification toward Potent Degradable Antibacterial Polyesters with Guanidine Moiety. Biomacromolecules 2025. [PMID: 40335887 DOI: 10.1021/acs.biomac.5c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
We have previously synthesized poly(3-methylene-1,5-dioxepan-2-one) (PMDXO) that could be modified through the thiol-Michael addition reaction to afford versatile degradable polymers. Herein, we find that the γ-oxa in PMDXO exerts a dramatically accelerating effect on the thiol-Michael addition post-modification, which makes PMDXO a promising platform polymer for synthesizing guanidinium-functionalized aliphatic polyesters under mild and approximately stoichiometric conditions. The relationship between polymer structure and antibacterial performance was investigated. A promising cationic polyester, P20-2C, which shows extremely low hemolytic activity, moderate cytotoxicity, and broad-spectrum potent bactericidal capability against 214 clinically isolated ESKAPE strains, is obtained. The good biocompatibility and potent in vivo antibacterial efficacy of P20-2C have been demonstrated in mice using three bacterial infection models, including MDR E. coli-infected peritonitis and MRSA-infected subcutaneous abscess and skin wound. Finally, a multimodal bactericidal mechanism of membrane disruption plus reactive oxygen species upregulation is proposed for P20-2C against E. coli and S. aureus.
Collapse
Affiliation(s)
- Yilin Qian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Li
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, China
| | - Yang Cheng
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, China
| | - Xiao-Tuan Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Hakobyan K, Ishizuka F, Corrigan N, Xu J, Zetterlund PB, Prescott SW, Boyer C. RAFT Polymerization for Advanced Morphological Control: From Individual Polymer Chains to Bulk Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412407. [PMID: 39502004 DOI: 10.1002/adma.202412407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/27/2024] [Indexed: 01/11/2025]
Abstract
Control of the morphology of polymer systems is achieved through reversible-deactivation radical polymerization techniques such as Reversible Addition-Fragmentation chain Transfer (RAFT). Advanced RAFT techniques offer much more than just "living" polymerization - the RAFT toolkit now enables morphological control of polymer systems across many decades of length-scale. Morphological control is explored at the molecular-level in the context of syntheses where individual monomer unit insertion provides sequence-defined polymers (single unit monomer insertion, SUMI). By being able to define polymer architectures, the synthesis of bespoke shapes and sizes of nanostructures becomes possible by leveraging self-assembly (polymerization induced self-assembly, PISA). Finally, it is seen that macroscopic materials can be produced with nanoscale detail, based on phase-separated nanostructures (polymerization induced microphase separation, PIMS) and microscale detail based on 3D-printing technologies. RAFT control of morphology is seen to cross from molecular level to additive manufacturing length-scales, with complete morphological control over all length-scales.
Collapse
Affiliation(s)
- Karen Hakobyan
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Fumi Ishizuka
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Per B Zetterlund
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Stuart W Prescott
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| |
Collapse
|
3
|
Aquib M, Yang W, Yu L, Kannaujiya VK, Zhang Y, Li P, Whittaker A, Fu C, Boyer C. Effect of cyclic topology versus linear terpolymers on antibacterial activity and biocompatibility: antimicrobial peptide avatars. Chem Sci 2024:d4sc05797j. [PMID: 39479165 PMCID: PMC11520352 DOI: 10.1039/d4sc05797j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Host-defense peptides (HDPs) and their analogs hold significant potential for combating multidrug-resistant (MDR) bacterial infections. However, their clinical use has been hindered by susceptibility to proteases, high production costs, and cytotoxicity towards mammalian cells. Synthetic polymers with diverse topologies and compositions, designed to mimic HDPs, show promise for treating bacterial infections. In this study, we explored the antibacterial activity and biocompatibility of synthetic amphiphilic linear (LPs) and cyclic terpolymers (CPs) containing hydrophobic groups 2-ethylhexyl (E) and 2-phenylethyl (P) at 20% and 30% content. LPs were synthesized via RAFT polymerization and then cyclized into CPs through a hetero-Diels-Alder click reaction. The bioactivity of these terpolymers was correlated with their topology (LPs vs. CPs) and hydrophobic composition. LPs demonstrated superior antibacterial efficacy compared to CPs against four Gram-negative bacterial strains, with terpolymers containing (P) outperforming those with (E). Increasing the hydrophobicity from 20% to 30% in the terpolymers increased toxicity to both bacterial and mammalian cells. Notably, our terpolymers inhibited the MDR Gram-negative bacterial strain PA37 more effectively than gentamicin and ciprofloxacin. Furthermore, our terpolymers were able to disrupt cell membranes and rapidly eliminate Gram-negative bacteria (99.99% within 15 minutes). Interestingly, CPs exhibited higher hemocompatibility and biocompatibility with mammalian macrophage cells compared to LPs, showcasing a better safety profile (CPs > LPs). These findings underscore the importance of tailoring polymer architectures and optimizing the hydrophilic/hydrophobic balance to address challenges related to toxicity and selectivity in developing antimicrobial polymers.
Collapse
Affiliation(s)
- Md Aquib
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Wenting Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Queensland 4072 Australia
| | - Luofeng Yu
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Vinod Kumar Kannaujiya
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Yuhao Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Queensland 4072 Australia
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Andrew Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Queensland 4072 Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Queensland 4072 Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| |
Collapse
|
4
|
Gu Y, Zhang Z, Gao T, Gómez-Bombarelli R, Chen M. Low-Dispersity Polymers via Free Radical Alternating Copolymerization: Effects of Charge-Transfer-Complexes. Angew Chem Int Ed Engl 2024; 63:e202409744. [PMID: 39058330 DOI: 10.1002/anie.202409744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Alternating copolymers are crucial for diverse applications. While dispersity (Ð, also known as molecular weight distribution, MWD) influences the properties of polymers, achieving low dispersities in alternating copolymers poses a notable challenge via free radical polymerizations (FRPs). In this work, we demonstrated an unexpected discovery that dispersities are affected by the participation of charge transfer complexes (CTCs) formed between monomer pairs during free radical alternating copolymerization, which have inspired the successful synthesis of various alternating copolymers with low dispersities (>30 examples, Ð=1.13-1.39) under visible-light irradiation. The synthetic method is compatible with binary, ternary and quaternary alternating copolymerizations and is expandable for both fluorinated and non-fluorinated monomer pairs. DFT calculations combined with model experiments indicated that CTC-absent reaction exhibits higher propagation rates and affords fewer radical terminations, which could contribute to low dispersities. Based on the integration of Monte Carlo simulation and Bayesian optimization, we established the relationship map between FRP parameter space and dispersity, further suggested the correlation between low dispersities and higher propagation rates. Our research sheds light on dispersity control via FRPs and creates a novel platform to investigate polymer dispersity through machine learning.
Collapse
Affiliation(s)
- Yu Gu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433, Shanghai, China
| | - Zexi Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433, Shanghai, China
| | - Tianyi Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433, Shanghai, China
| | - Rafael Gómez-Bombarelli
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 02139, Massachusetts, USA
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433, Shanghai, China
| |
Collapse
|
5
|
Shao Z, Luo H, Nguyen THQ, Wong EHH. Effects of Secondary Amine and Molecular Weight on the Biological Activities of Cationic Amphipathic Antimicrobial Macromolecules. Biomacromolecules 2024; 25:6899-6912. [PMID: 39312184 PMCID: PMC11483101 DOI: 10.1021/acs.biomac.4c01137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Cationic amphipathic antimicrobial agents inspired by antimicrobial peptides (AMPs) have shown potential in combating multidrug-resistant bacteria because of minimal resistance development. Here, this study focuses on the development of novel cationic amphipathic macromolecules in the form of dendrons and polymers with different molecular weights that employ secondary amine piperidine derivative as the cationic moiety. Generally, secondary amine compounds, especially at low molecular weights, have stronger bacteriostatic, bactericidal, and inner membrane disruption abilities than those of their primary amine counterparts. Low molecular weight D2 dendrons with two cationic centers and one hydrophobic dodecyl chain produce outstanding synergistic activity with the antibiotic rifampicin against Escherichia coli, where one-eighth of the standalone dose of D2 dendrons could reduce the concentration of rifampicin required by up to 4000-fold. The low molecular weight compounds are also less toxic and therefore have higher therapeutic index values compared to compounds with larger molecular weights. This study thus reveals key information that may inform the design of future synthetic AMPs and mimics, specifically, the design of low-molecular-weight compounds with secondary amine as the cationic center to achieve high antimicrobial potency and biocompatibility.
Collapse
Affiliation(s)
- Zeyu Shao
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Hao Luo
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Thi Hanh Quyen Nguyen
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Edgar H. H. Wong
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Shao Z, Xu YD, Luo H, Hakobyan K, Zhang M, Xu J, Stenzel MH, Wong EHH. Smart Galactosidase-Responsive Antimicrobial Dendron: Towards More Biocompatible Membrane-Disruptive Agents. Macromol Rapid Commun 2024; 45:e2400350. [PMID: 38895813 DOI: 10.1002/marc.202400350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Antimicrobial resistance is a global healthcare challenge that urgently needs the development of new therapeutic agents. Antimicrobial peptides and mimics thereof are promising candidates but mostly suffer from inherent toxicity issues due to the non-selective binding of cationic groups with mammalian cells. To overcome this toxicity issue, this work herein reports the synthesis of a smart antimicrobial dendron with masked cationic groups (Gal-Dendron) that could be uncaged in the presence of β-galactosidase enzyme to form the activated Enz-Dendron and confer antimicrobial activity. Enz-Dendron show bacteriostatic activity toward Gram-negative (P. aeruginosa and E. coli) and Gram-positive (S. aureus) bacteria with minimum inhibitory concentration values of 96 µm and exerted its antimicrobial mechanism via a membrane disruption pathway, as indicated by inner and outer membrane permeabilization assays. Crucially, toxicity studies confirmed that the masked prodrug Gal-Dendron exhibited low hemolysis and is at least 2.4 times less toxic than the uncaged cationic Enz-Dendron, thus demonstrating the advantage of masking the cationic groups with responsive immolative linkers to overcome toxicity and selectivity issues. Overall, this study highlights the potential of designing new membrane-disruptive antimicrobial agents that are more biocompatible via the amine uncaging strategy.
Collapse
Affiliation(s)
- Zeyu Shao
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - You Dan Xu
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Hao Luo
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Karen Hakobyan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Mengnan Zhang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| |
Collapse
|
7
|
Aquib M, Schaefer S, Gmedhin H, Corrigan N, Bobrin VA, Boyer C. Shape matters: Effect of amphiphilic polymer topology on antibacterial activity and hemocompatibility. Eur Polym J 2024; 205:112698. [DOI: 10.1016/j.eurpolymj.2023.112698] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Weiss AM, Lopez MA, Rawe BW, Manna S, Chen Q, Mulder EJ, Rowan SJ, Esser-Kahn AP. Understanding How Cationic Polymers' Properties Inform Toxic or Immunogenic Responses via Parametric Analysis. Macromolecules 2023; 56:7286-7299. [PMID: 37781211 PMCID: PMC10537447 DOI: 10.1021/acs.macromol.3c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/16/2023] [Indexed: 10/03/2023]
Abstract
Cationic polymers are widely used materials in diverse biotechnologies. Subtle variations in these polymers' properties can change them from exceptional delivery agents to toxic inflammatory hazards. Conventional screening strategies optimize for function in a specific application rather than observing how underlying polymer-cell interactions emerge from polymers' properties. An alternative approach is to map basic underlying responses, such as immunogenicity or toxicity, as a function of basic physicochemical parameters to inform the design of materials for a breadth of applications. To demonstrate the potential of this approach, we synthesized 107 polymers varied in charge, hydrophobicity, and molecular weight. We then screened this library for cytotoxic behavior and immunogenic responses to map how these physicochemical properties inform polymer-cell interactions. We identify three compositional regions of interest and use confocal microscopy to uncover the mechanisms behind the observed responses. Finally, immunogenic activity is confirmed in vivo. Highly cationic polymers disrupted the cellular plasma membrane to induce a toxic phenotype, while high molecular weight, hydrophobic polymers were uptaken by active transport to induce NLRP3 inflammasome activation, an immunogenic phenotype. Tertiary amine- and triethylene glycol-containing polymers did not invoke immunogenic or toxic responses. The framework described herein allows for the systematic characterization of new cationic materials with different physicochemical properties for applications ranging from drug and gene delivery to antimicrobial coatings and tissue scaffolds.
Collapse
Affiliation(s)
- Adam M. Weiss
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S Ellis Ave., Chicago, Illinois 60637, United States
- Department
of Chemistry, University of Chicago, 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Marcos A. Lopez
- Department
of Chemistry, University of Chicago, 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Benjamin W. Rawe
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Saikat Manna
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Qing Chen
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Elizabeth J. Mulder
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Stuart J. Rowan
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S Ellis Ave., Chicago, Illinois 60637, United States
- Department
of Chemistry, University of Chicago, 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Aaron P. Esser-Kahn
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S Ellis Ave., Chicago, Illinois 60637, United States
| |
Collapse
|
9
|
Davidson CLG, Lott ME, Trachsel L, Wong AJ, Olson RA, Pedro DI, Sawyer WG, Sumerlin BS. Inverse Miniemulsion Enables the Continuous-Flow Synthesis of Controlled Ultra-High Molecular Weight Polymers. ACS Macro Lett 2023; 12:1224-1230. [PMID: 37624643 DOI: 10.1021/acsmacrolett.3c00431] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
We report the controlled synthesis of ultra-high molecular weight (UHMW) polymers (Mn ≥ 106 g/mol) via continuous flow in a tubular reactor. At high monomer conversion, UHMW polymers in homogeneous batch polymerization exhibit high viscosities that pose challenges for employing continuous flow reactors. However, under heterogeneous inverse miniemulsion (IME) conditions, UHMW polymers can be produced within the dispersed phase, while the viscosity of the heterogeneous mixture remains approximately the same as the viscosity of the continuous phase. Conducting such IME polymerizations in flow results in a faster rate of polymerization compared to batch IME polymerizations while still providing excellent control over molecular weight up to 106 g/mol. Crucial emulsion parameters, such as particle size and stability under continuous flow conditions, were examined using dynamic light scattering. A range of poly(N,N-dimethylacrylamide) and poly(4-acryloylmorpholine) polymers with molecular weights of 104-106 g/mol (Đ ≤ 1.31) were produced by this method using water-soluble trithiocarbonates as photoiniferters.
Collapse
Affiliation(s)
- Cullen L G Davidson
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Megan E Lott
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Lucca Trachsel
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Alexander J Wong
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Rebecca A Olson
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Diego I Pedro
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - W Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S Sumerlin
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
10
|
McDonald SM, Augustine EK, Lanners Q, Rudin C, Catherine Brinson L, Becker ML. Applied machine learning as a driver for polymeric biomaterials design. Nat Commun 2023; 14:4838. [PMID: 37563117 PMCID: PMC10415291 DOI: 10.1038/s41467-023-40459-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Polymers are ubiquitous to almost every aspect of modern society and their use in medical products is similarly pervasive. Despite this, the diversity in commercial polymers used in medicine is stunningly low. Considerable time and resources have been extended over the years towards the development of new polymeric biomaterials which address unmet needs left by the current generation of medical-grade polymers. Machine learning (ML) presents an unprecedented opportunity in this field to bypass the need for trial-and-error synthesis, thus reducing the time and resources invested into new discoveries critical for advancing medical treatments. Current efforts pioneering applied ML in polymer design have employed combinatorial and high throughput experimental design to address data availability concerns. However, the lack of available and standardized characterization of parameters relevant to medicine, including degradation time and biocompatibility, represents a nearly insurmountable obstacle to ML-aided design of biomaterials. Herein, we identify a gap at the intersection of applied ML and biomedical polymer design, highlight current works at this junction more broadly and provide an outlook on challenges and future directions.
Collapse
Affiliation(s)
| | - Emily K Augustine
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Quinn Lanners
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Cynthia Rudin
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - L Catherine Brinson
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, NC, USA.
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
11
|
Ayon NJ. High-Throughput Screening of Natural Product and Synthetic Molecule Libraries for Antibacterial Drug Discovery. Metabolites 2023; 13:625. [PMID: 37233666 PMCID: PMC10220967 DOI: 10.3390/metabo13050625] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
Due to the continued emergence of resistance and a lack of new and promising antibiotics, bacterial infection has become a major public threat. High-throughput screening (HTS) allows rapid screening of a large collection of molecules for bioactivity testing and holds promise in antibacterial drug discovery. More than 50% of the antibiotics that are currently available on the market are derived from natural products. However, with the easily discoverable antibiotics being found, finding new antibiotics from natural sources has seen limited success. Finding new natural sources for antibacterial activity testing has also proven to be challenging. In addition to exploring new sources of natural products and synthetic biology, omics technology helped to study the biosynthetic machinery of existing natural sources enabling the construction of unnatural synthesizers of bioactive molecules and the identification of molecular targets of antibacterial agents. On the other hand, newer and smarter strategies have been continuously pursued to screen synthetic molecule libraries for new antibiotics and new druggable targets. Biomimetic conditions are explored to mimic the real infection model to better study the ligand-target interaction to enable the designing of more effective antibacterial drugs. This narrative review describes various traditional and contemporaneous approaches of high-throughput screening of natural products and synthetic molecule libraries for antibacterial drug discovery. It further discusses critical factors for HTS assay design, makes a general recommendation, and discusses possible alternatives to traditional HTS of natural products and synthetic molecule libraries for antibacterial drug discovery.
Collapse
Affiliation(s)
- Navid J Ayon
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
12
|
Soukarieh F, Gurnani P, Romero M, Halliday N, Stocks M, Alexander C, Cámara M. Design of Quorum Sensing Inhibitor-Polymer Conjugates to Penetrate Pseudomonas aeruginosa Biofilms. ACS Macro Lett 2023; 12:314-319. [PMID: 36790191 PMCID: PMC10035027 DOI: 10.1021/acsmacrolett.2c00699] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
Antimicrobial resistance (AMR) is a global threat to public health with a forecast of a negative financial impact of one trillion dollars per annum, hence novel therapeutics are urgently needed. The resistance of many bacteria against current drugs is further augmented by the ability of these microbes to form biofilms where cells are encased in a slimy extracellular matrix and either adhered to a surface or forming cell aggregates. Biofilms form physiochemical barriers against the penetration of treatments such as small molecule antibacterials, rendering most treatments ineffective. Pseudomonas aeruginosa, a priority pathogen of immediate concern, controls biofilm formation through multiple layers of gene regulation pathways including quorum sensing (QS), a cell-to-cell signaling system. We have recently reported a series of inhibitors of the PqsR QS regulator from this organism that can potentiate the action of antibiotics. However, these QS inhibitors (QSIs) have shown modest effects on biofilms in contrast with planktonic cultures due to poor penetration through the biofilm matrix. To enhance the delivery of the inhibitors, a small library of polymers was designed as carriers of a specific QSI, with variations in the side chains to introduce either positively charged or neutral moieties to aid penetration into and through the P. aeruginosa biofilm. The synthesized polymers were evaluated in a series of assays to establish their effects on the inhibition of the Pqs QS system in P. aeruginosa, the levels of inhibitor release from polymers, and their impact on biofilm formation. A selected cationic polymer-QSI conjugate was found to penetrate effectively through biofilm layers and to release the QSI. When used in combination with ciprofloxacin, it enhanced the biofilm antimicrobial activity of this antibiotic compared to free QSI and ciprofloxacin under the same conditions.
Collapse
Affiliation(s)
- Fadi Soukarieh
- National
Biofilms Innovation Centre, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, United
Kingdom
- School
of Life Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, United
Kingdom
| | - Pratik Gurnani
- Division
of Molecular Therapeutics and Formulation, Boots Science Building,
School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Manuel Romero
- National
Biofilms Innovation Centre, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, United
Kingdom
- Department
of Microbiology and Parasitology, Faculty of Biology-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Nigel Halliday
- School
of Life Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, United
Kingdom
| | - Michael Stocks
- School
of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Cameron Alexander
- Division
of Molecular Therapeutics and Formulation, Boots Science Building,
School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Miguel Cámara
- National
Biofilms Innovation Centre, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, United
Kingdom
- School
of Life Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, United
Kingdom
| |
Collapse
|
13
|
Förster C, Andrieu-Brunsen A. Recent developments in visible light induced polymerization towards its application to nanopores. Chem Commun (Camb) 2023; 59:1554-1568. [PMID: 36655782 PMCID: PMC9904278 DOI: 10.1039/d2cc06595a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Visible light induced polymerizations are a strongly emerging field in recent years. Besides the often mild reaction conditions, visible light offers advantages of spatial and temporal control over chain growth, which makes visible light ideal for functionalization of surfaces and more specifically of nanoscale pores. Current challenges in nanopore functionalization include, in particular, local and highly controlled polymer functionalizations. Using spatially limited light sources such as lasers or near field modes for light-induced polymer functionalization is envisioned to allow local functionalization of nanopores and thereby improve nanoporous material performance. These light sources are usually providing visible light while classical photopolymerizations are mostly based on UV-irradiation. In this review, we highlight developments in visible light induced polymerizations and especially in visible light induced controlled polymerizations as well as their potential for nanopore functionalization. Existing examples of visible light induced polymerizations in nanopores are emphasized.
Collapse
Affiliation(s)
- Claire Förster
- Macromolecular Chemistry – Smart Membranes, Technische Universität Darmstadt64287DarmstadtGermanyannette.andrieu-brunsen@.tu-darmstadt.de
| | - Annette Andrieu-Brunsen
- Macromolecular Chemistry – Smart Membranes, Technische Universität Darmstadt64287DarmstadtGermanyannette.andrieu-brunsen@.tu-darmstadt.de
| |
Collapse
|
14
|
Szczepaniak G, Jeong J, Kapil K, Dadashi-Silab S, Yerneni SS, Ratajczyk P, Lathwal S, Schild DJ, Das SR, Matyjaszewski K. Open-air green-light-driven ATRP enabled by dual photoredox/copper catalysis. Chem Sci 2022; 13:11540-11550. [PMID: 36320395 PMCID: PMC9557244 DOI: 10.1039/d2sc04210j] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Photoinduced atom transfer radical polymerization (photo-ATRP) has risen to the forefront of modern polymer chemistry as a powerful tool giving access to well-defined materials with complex architecture. However, most photo-ATRP systems can only generate radicals under biocidal UV light and are oxygen-sensitive, hindering their practical use in the synthesis of polymer biohybrids. Herein, inspired by the photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization, we demonstrate a dual photoredox/copper catalysis that allows open-air ATRP under green light irradiation. Eosin Y was used as an organic photoredox catalyst (PC) in combination with a copper complex (X-CuII/L). The role of PC was to trigger and drive the polymerization, while X-CuII/L acted as a deactivator, providing a well-controlled polymerization. The excited PC was oxidatively quenched by X-CuII/L, generating CuI/L activator and PC˙+. The ATRP ligand (L) used in excess then reduced the PC˙+, closing the photocatalytic cycle. The continuous reduction of X-CuII/L back to CuI/L by excited PC provided high oxygen tolerance. As a result, a well-controlled and rapid ATRP could proceed even in an open vessel despite continuous oxygen diffusion. This method allowed the synthesis of polymers with narrow molecular weight distributions and controlled molecular weights using Cu catalyst and PC at ppm levels in both aqueous and organic media. A detailed comparison of photo-ATRP with PET-RAFT polymerization revealed the superiority of dual photoredox/copper catalysis under biologically relevant conditions. The kinetic studies and fluorescence measurements indicated that in the absence of the X-CuII/L complex, green light irradiation caused faster photobleaching of eosin Y, leading to inhibition of PET-RAFT polymerization. Importantly, PET-RAFT polymerizations showed significantly higher dispersity values (1.14 ≤ Đ ≤ 4.01) in contrast to photo-ATRP (1.15 ≤ Đ ≤ 1.22) under identical conditions.
Collapse
Affiliation(s)
- Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
- Faculty of Chemistry, University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Jaepil Jeong
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | - Kriti Kapil
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | - Sajjad Dadashi-Silab
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | | | - Paulina Ratajczyk
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| | - Sushil Lathwal
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | - Dirk J Schild
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | - Subha R Das
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
- Center for Nucleic Acids Science & Technology, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | | |
Collapse
|
15
|
Kumar R. Materiomically Designed Polymeric Vehicles for Nucleic Acids: Quo Vadis? ACS APPLIED BIO MATERIALS 2022; 5:2507-2535. [PMID: 35642794 DOI: 10.1021/acsabm.2c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite rapid advances in molecular biology, particularly in site-specific genome editing technologies, such as CRISPR/Cas9 and base editing, financial and logistical challenges hinder a broad population from accessing and benefiting from gene therapy. To improve the affordability and scalability of gene therapy, we need to deploy chemically defined, economical, and scalable materials, such as synthetic polymers. For polymers to deliver nucleic acids efficaciously to targeted cells, they must optimally combine design attributes, such as architecture, length, composition, spatial distribution of monomers, basicity, hydrophilic-hydrophobic phase balance, or protonation degree. Designing polymeric vectors for specific nucleic acid payloads is a multivariate optimization problem wherein even minuscule deviations from the optimum are poorly tolerated. To explore the multivariate polymer design space rapidly, efficiently, and fruitfully, we must integrate parallelized polymer synthesis, high-throughput biological screening, and statistical modeling. Although materiomics approaches promise to streamline polymeric vector development, several methodological ambiguities must be resolved. For instance, establishing a flexible polymer ontology that accommodates recent synthetic advances, enforcing uniform polymer characterization and data reporting standards, and implementing multiplexed in vitro and in vivo screening studies require considerable planning, coordination, and effort. This contribution will acquaint readers with the challenges associated with materiomics approaches to polymeric gene delivery and offers guidelines for overcoming these challenges. Here, we summarize recent developments in combinatorial polymer synthesis, high-throughput screening of polymeric vectors, omics-based approaches to polymer design, barcoding schemes for pooled in vitro and in vivo screening, and identify materiomics-inspired research directions that will realize the long-unfulfilled clinical potential of polymeric carriers in gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemical & Biological Engineering, Colorado School of Mines, 1613 Illinois St, Golden, Colorado 80401, United States
| |
Collapse
|
16
|
Liu M, Bauman L, Nogueira CL, Aucoin MG, Anderson WA, Zhao B. Antimicrobial polymeric composites for high-touch surfaces in healthcare applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022; 22:100395. [PMID: 35434438 PMCID: PMC8995198 DOI: 10.1016/j.cobme.2022.100395] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022]
Abstract
Antimicrobial polymer composites have long been utilized in the healthcare field as part of the first line of defense. These composites are desirable in that they pose a minimal risk of developing contagions with antibiotic resistance. For this reason, the field of antimicrobial composites has seen steady growth over recent years and is becoming increasingly important during the current COVID-19 pandemic. In this article, we first review the need of the antimicrobial polymers in high tough surfaces, the antimicrobial mechanism, and then the recent advances in the development of antimicrobial polymer composite including the utilization of intrinsic antimicrobial polymers, the addition of antimicrobial additives, and new exploration of surface patterning. While there are many established and developing methods of imbuing a material with antimicrobial activity, there currently is no standard quantification method for these properties leading to difficulty comparing the efficacy of these materials within the literature. A discussion of the common antimicrobial characterization methods is provided along with highlights on the need of a standardized quantification of antiviral and antibacterial properties in testing to allow ease of comparison between generated libraries and to facilitate proper screening. We also discuss and comment on the current trends of the development of antimicrobial polymer composites with long-lasting and specific antimicrobial activities, nontoxic properties, and environmental friendliness against a broad-spectrum of microbes.
Collapse
Affiliation(s)
- Minghui Liu
- Department of Chemical Engineering
- Waterloo Institute for Nanotechnology & Institute for Polymer Research, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lukas Bauman
- Department of Chemical Engineering
- Waterloo Institute for Nanotechnology & Institute for Polymer Research, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | - Boxin Zhao
- Department of Chemical Engineering
- Waterloo Institute for Nanotechnology & Institute for Polymer Research, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
17
|
Epoxy vitrimer based on borate ester bond for green degradation, closed-loop recycling, and ready reprocessing. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Li Z, Han Z, Stenzel MH, Chapman R. A High Throughput Approach for Designing Polymers That Mimic the TRAIL Protein. NANO LETTERS 2022; 22:2660-2666. [PMID: 35312327 DOI: 10.1021/acs.nanolett.1c04469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We have leveraged a high throughput approach to design a fully synthetic polymer mimic of the chemotherapeutic protein "TRAIL". Our design enables the synthesis of libraries of star-shaped polymers presenting exactly one receptor binding peptide at the end of each arm with no purification steps. Clear structure-activity relationships in screening for receptor binding and the apoptotic activity on colon cancer lines (COLO205) led us to identify trivalent structures, ∼1.5 nm in hydrodynamic radius as the best mimics. These showed IC50 values ∼2 μM and resulted in the elevated levels of caspase-8 expected from this mechanism of cell death. Our results demonstrate the potential for HTP screening methods to be used in the design of polymers that can mimic a whole range of complex therapeutic proteins.
Collapse
Affiliation(s)
- Zihao Li
- Centre for Advanced Macromolecular Design, School of Chemistry, Univeristy of New South Wales Sydney, Kensington, New South Wales 2052, Australia
| | - Zifei Han
- Centre for Advanced Macromolecular Design, School of Chemistry, Univeristy of New South Wales Sydney, Kensington, New South Wales 2052, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, Univeristy of New South Wales Sydney, Kensington, New South Wales 2052, Australia
| | - Robert Chapman
- Centre for Advanced Macromolecular Design, School of Chemistry, Univeristy of New South Wales Sydney, Kensington, New South Wales 2052, Australia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
19
|
Yasuhara K, Tsukamoto M, Kikuchi JI, Kuroda K. An Antimicrobial Peptide-Mimetic Methacrylate Random Copolymer Induces Domain Formation in a Model Bacterial Membrane. J Membr Biol 2022; 255:513-521. [PMID: 35182193 DOI: 10.1007/s00232-022-00220-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
To address the emerging issue of drug-resistant bacteria, membrane-active synthetic polymers have been designed and developed to mimic host-defense antimicrobial peptides (AMPs) as antibiotic alternatives. In this study, we investigated the domain formation induced by synthetic polymer mimics of AMPs using model membranes to elucidate the biophysical principles that govern their membrane-active mechanisms. To that end, lipid vesicles mimicking Escherichia coli (E. coli) membrane were prepared using an 8:2 (molar ratio) mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol), sodium salt (POPG). Our studies using differential scanning calorimetry (DSC) and fluorescence microscopy indicated that cationic amphiphilic methacrylate random copolymers induced the phase separation to form POPE- or POPG-rich domains. A rhodamine-labeled polymer also showed the binding to separated domains in the membrane. Based on these results, we propose the mechanism that the copolymers induce domain formation by clustering of anionic POPG lipids similar to natural AMPs. In addition, the time-course of polymer binding to the GUV membrane was sigmoidal, suggesting the positive feedback loop in the membrane binding. We also hypothesize that this cooperative binding of the polymer is driven by the domain formation. This study demonstrates the potential of the amphiphilic copolymers to modulate the lipid organization of cell membranes, which may provide a new strategy to design membrane-active antimicrobial agents.
Collapse
Affiliation(s)
- Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 6300192, Japan. .,Center for Digital Green-Innovation, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 6300192, Japan.
| | - Manami Tsukamoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 6300192, Japan
| | - Jun-Ichi Kikuchi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 6300192, Japan
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N. University Ave., Ann Arbor, MI, 48109, USA
| |
Collapse
|
20
|
Ma Q, Zhang X, Jiang Y, Lin J, Graff B, Hu S, Lalevée J, Liao S. Organocatalytic PET-RAFT polymerization with a low ppm of organic photocatalyst under visible light. Polym Chem 2022. [DOI: 10.1039/d1py01431e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of light-mediated controlled radical polymerization has benefited from the discovery of novel photocatalysts, which could allow precise light control over the polymerization process and the production of well-defined polymers.
Collapse
Affiliation(s)
- Qiang Ma
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
| | - Xun Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu Jiang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Junqiang Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Bernadette Graff
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Siping Hu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jacques Lalevée
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Beijing National Laboratory for Molecular Science, Beijing 100190, China
| |
Collapse
|
21
|
Jung K, Corrigan N, Wong EHH, Boyer C. Bioactive Synthetic Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105063. [PMID: 34611948 DOI: 10.1002/adma.202105063] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Indexed: 05/21/2023]
Abstract
Synthetic polymers are omnipresent in society as textiles and packaging materials, in construction and medicine, among many other important applications. Alternatively, natural polymers play a crucial role in sustaining life and allowing organisms to adapt to their environments by performing key biological functions such as molecular recognition and transmission of genetic information. In general, the synthetic and natural polymer worlds are completely separated due to the inability for synthetic polymers to perform specific biological functions; in some cases, synthetic polymers cause uncontrolled and unwanted biological responses. However, owing to the advancement of synthetic polymerization techniques in recent years, new synthetic polymers have emerged that provide specific biological functions such as targeted molecular recognition of peptides, or present antiviral, anticancer, and antimicrobial activities. In this review, the emergence of this generation of bioactive synthetic polymers and their bioapplications are summarized. Finally, the future opportunities in this area are discussed.
Collapse
Affiliation(s)
- Kenward Jung
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
22
|
Wang Z, Zhou Y, Chen M. Computer‐Aided
Living Polymerization Conducted under
Continuous‐Flow
Conditions
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zeyu Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Yang Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| |
Collapse
|
23
|
Li CY, Yu SS. Efficient Visible-Light-Driven RAFT Polymerization Mediated by Deep Eutectic Solvents under an Open-to-Air Environment. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chia-Yu Li
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Sheng-Sheng Yu
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
- Core Facility Center, National Cheng Kung University, Tainan 70101, Taiwan
- Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
24
|
Judzewitsch PR, Corrigan N, Wong EHH, Boyer C. Photo-Enhanced Antimicrobial Activity of Polymers Containing an Embedded Photosensitiser. Angew Chem Int Ed Engl 2021; 60:24248-24256. [PMID: 34453390 DOI: 10.1002/anie.202110672] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 12/14/2022]
Abstract
This work presents the synthesis of a novel photosensitive acrylate monomer for use as both a self-catalyst in the photoinduced electron/energy transfer-reversible addition fragmentation chain transfer (PET-RAFT) polymerisation process and a photosensitiser (PS) for antibacterial applications. Hydrophilic, cationic, and antimicrobial formulations are explored to compare the antibacterial effects between charged and non-charged polymers. Covalent attachment of the catalyst to well-defined linear polymer chains has no effect on polymerisation control or singlet oxygen generation. The addition of the PS to polymers provides activity against S. aureus for all polymer formulations, resulting in up to a 99.99999 % killing efficacy in 30 min. Antimicrobial peptide mimetic polymers previously active against P. aeruginosa, but not S. aureus, gain significant bactericidal activity against S. aureus through the inclusion of PS groups, with 99.998 % killing efficiency after 30 min incubation with light. Thus, a broader spectrum of antimicrobial activity is achieved using two distinct mechanisms of bactericidal activity via the incorporation of a photosensitiser monomer into an antimicrobial polymer.
Collapse
Affiliation(s)
- Peter R Judzewitsch
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| |
Collapse
|
25
|
Liu G, Xu Z, Dai X, Zeng Y, Wei Y, He X, Yan LT, Tao L. De Novo Design of Entropy-Driven Polymers Resistant to Bacterial Attachment via Multicomponent Reactions. J Am Chem Soc 2021; 143:17250-17260. [PMID: 34618447 DOI: 10.1021/jacs.1c08332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nonbactericidal polymers that prevent bacterial attachment are important for public health, environmental protection, and avoiding the generation of superbugs. Here, inspired by the physical bactericidal process of carbon nanotubes and graphene derivatives, we develop nonbactericidal polymers resistant to bacterial attachment by using multicomponent reactions (MCRs) to introduce molecular "needles" (rigid aliphatic chains) and molecular "razors" (multicomponent structures) into polymer side chains. Computer simulation reveals the occurrence of spontaneous entropy-driven interactions between the bacterial bilayers and the "needles" and "razors" in polymer structures and provides guidance for the optimization of this type of polymers for enhanced resistibility to bacterial attachment. The blending of the optimized polymer with commercially available polyurethane produces a film with remarkably superior stability of the resistance to bacterial adhesion after wear compared with that of commercial mobile phone shells made by the Sharklet technology. This proof-of-concept study explores entropy-driven polymers resistant to bacterial attachment via a combination of MCRs, computer simulation, and polymer chemistry, paving the way for the de novo design of nonbactericidal polymers to prevent bacterial contamination.
Collapse
Affiliation(s)
- Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Ziyang Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yuan Zeng
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
26
|
Photo‐Enhanced Antimicrobial Activity of Polymers Containing an Embedded Photosensitiser. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Tsukamoto M, Zappala E, Caputo GA, Kikuchi JI, Najarian K, Kuroda K, Yasuhara K. Mechanistic Study of Membrane Disruption by Antimicrobial Methacrylate Random Copolymers by the Single Giant Vesicle Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9982-9995. [PMID: 34378943 DOI: 10.1021/acs.langmuir.1c01047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cationic amphiphilic polymers have been a platform to create new antimicrobial materials that act by disrupting bacterial cell membranes. While activity characterization and chemical optimization have been done in numerous studies, there remains a gap in our knowledge on the antimicrobial mechanisms of the polymers, which is needed to connect their chemical structures and biological activities. To that end, we used a single giant unilamellar vesicle (GUV) method to identify the membrane-disrupting mechanism of methacrylate random copolymers. The copolymers consist of random sequences of aminoethyl methacrylate and methyl (MMA) or butyl (BMA) methacrylate, with low molecular weights of 1600-2100 g·mol-1. GUVs consisting of an 8:2 mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol), sodium salt (POPG) and those with only 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were prepared to mimic the bacterial (Escherichia coli) or mammalian membranes, respectively. The disruption of bacteria and mammalian cell membrane-mimetic lipid bilayers in GUVs reflected the antimicrobial and hemolytic activities of the copolymers, suggesting that the copolymers act by disrupting cell membranes. The copolymer with BMA formed pores in the lipid bilayer, while that with MMA caused GUVs to burst. Therefore, we propose that the mechanism is inherent to the chemical identity or properties of hydrophobic groups. The copolymer with MMA showed characteristic sigmoid curves of the time course of GUV burst. We propose a new kinetic model with a positive feedback loop in the insertion of the polymer chains in the lipid bilayer. The novel finding of alkyl-dependent membrane-disrupting mechanisms will provide a new insight into the role of hydrophobic groups in the optimization strategy for antimicrobial activity and selectivity.
Collapse
Affiliation(s)
- Manami Tsukamoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 6300192, Japan
| | - Emanuele Zappala
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-2800, United States
| | - Gregory A Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Jun-Ichi Kikuchi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 6300192, Japan
| | - Kayvan Najarian
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-2800, United States
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 6300192, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 6300192, Japan
| |
Collapse
|
28
|
Tewabe A, Marew T, Birhanu G. The contribution of nano-based strategies in overcoming ceftriaxone resistance: a literature review. Pharmacol Res Perspect 2021; 9:e00849. [PMID: 34331383 PMCID: PMC8324973 DOI: 10.1002/prp2.849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial drug resistance, including resistance to multiple antibiotics, is continuously increasing. According to research findings, many bacteria resistant to other antibiotics were susceptible to ceftriaxone. However, over the last few years, ceftriaxone resistance has become growing and extremely worrisome challenge to the global healthcare system and several strategies have been initiated to contain the spread of antimicrobial drug resistance. Its extended use for therapeutic or preventative measures in humans and farm animals resulted in the development and spread of resistance. Recent advances in nanotechnology also offer novel formulations based on distinct types of nanostructure particles with different sizes and shapes, and flexible antimicrobial properties. For ceftriaxone, several nanostructured formulations through conjugation, intercalation, encapsulation with lipid carrier, and polymeric films have been investigated by different groups with promising results in combating the development of resistance. This review addressed the existing knowledge and practice on the contribution of nano-based delivery approaches in overcoming ceftriaxone resistance. Evidences have been generated from published research articles using major search electronic databases such as PubMed, Medline, Google Scholar, and Science Direct.
Collapse
Affiliation(s)
- Ashagrachew Tewabe
- Department of Pharmaceutics and Social PharmacySchool of PharmacyCollege of Health SciencesAddis Ababa UniversityAddis AbabaEthiopia
- Department of PharmacyCollege of Medicine and Health SciencesBahir Dar UniversityBahir DarEthiopia
| | - Tesfa Marew
- Department of Pharmaceutics and Social PharmacySchool of PharmacyCollege of Health SciencesAddis Ababa UniversityAddis AbabaEthiopia
| | - Gebremariam Birhanu
- Department of Pharmaceutics and Social PharmacySchool of PharmacyCollege of Health SciencesAddis Ababa UniversityAddis AbabaEthiopia
| |
Collapse
|
29
|
Soheilmoghaddam F, Rumble M, Cooper-White J. High-Throughput Routes to Biomaterials Discovery. Chem Rev 2021; 121:10792-10864. [PMID: 34213880 DOI: 10.1021/acs.chemrev.0c01026] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many existing clinical treatments are limited in their ability to completely restore decreased or lost tissue and organ function, an unenviable situation only further exacerbated by a globally aging population. As a result, the demand for new medical interventions has increased substantially over the past 20 years, with the burgeoning fields of gene therapy, tissue engineering, and regenerative medicine showing promise to offer solutions for full repair or replacement of damaged or aging tissues. Success in these fields, however, inherently relies on biomaterials that are engendered with the ability to provide the necessary biological cues mimicking native extracellular matrixes that support cell fate. Accelerating the development of such "directive" biomaterials requires a shift in current design practices toward those that enable rapid synthesis and characterization of polymeric materials and the coupling of these processes with techniques that enable similarly rapid quantification and optimization of the interactions between these new material systems and target cells and tissues. This manuscript reviews recent advances in combinatorial and high-throughput (HT) technologies applied to polymeric biomaterial synthesis, fabrication, and chemical, physical, and biological screening with targeted end-point applications in the fields of gene therapy, tissue engineering, and regenerative medicine. Limitations of, and future opportunities for, the further application of these research tools and methodologies are also discussed.
Collapse
Affiliation(s)
- Farhad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Madeleine Rumble
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Justin Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| |
Collapse
|
30
|
Chen Z, Wang Q, Zhang Z, Lei H. Preparation and properties of antibacterial fluorinated acrylic emulsion. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Upadhya R, Kosuri S, Tamasi M, Meyer TA, Atta S, Webb MA, Gormley AJ. Automation and data-driven design of polymer therapeutics. Adv Drug Deliv Rev 2021; 171:1-28. [PMID: 33242537 PMCID: PMC8127395 DOI: 10.1016/j.addr.2020.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023]
Abstract
Polymers are uniquely suited for drug delivery and biomaterial applications due to tunable structural parameters such as length, composition, architecture, and valency. To facilitate designs, researchers may explore combinatorial libraries in a high throughput fashion to correlate structure to function. However, traditional polymerization reactions including controlled living radical polymerization (CLRP) and ring-opening polymerization (ROP) require inert reaction conditions and extensive expertise to implement. With the advent of air-tolerance and automation, several polymerization techniques are now compatible with well plates and can be carried out at the benchtop, making high throughput synthesis and high throughput screening (HTS) possible. To avoid HTS pitfalls often described as "fishing expeditions," it is crucial to employ intelligent and big data approaches to maximize experimental efficiency. This is where the disruptive technologies of machine learning (ML) and artificial intelligence (AI) will likely play a role. In fact, ML and AI are already impacting small molecule drug discovery and showing signs of emerging in drug delivery. In this review, we present state-of-the-art research in drug delivery, gene delivery, antimicrobial polymers, and bioactive polymers alongside data-driven developments in drug design and organic synthesis. From this insight, important lessons are revealed for the polymer therapeutics community including the value of a closed loop design-build-test-learn workflow. This is an exciting time as researchers will gain the ability to fully explore the polymer structural landscape and establish quantitative structure-property relationships (QSPRs) with biological significance.
Collapse
Affiliation(s)
| | | | | | | | - Supriya Atta
- Rutgers, The State University of New Jersey, USA
| | - Michael A Webb
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540, USA
| | | |
Collapse
|
32
|
Bellotti V, Simonutti R. New Light in Polymer Science: Photoinduced Reversible Addition-Fragmentation Chain Transfer Polymerization (PET-RAFT) as Innovative Strategy for the Synthesis of Advanced Materials. Polymers (Basel) 2021; 13:1119. [PMID: 33915928 PMCID: PMC8036437 DOI: 10.3390/polym13071119] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
Photochemistry has attracted great interest in the last decades in the field of polymer and material science for the synthesis of innovative materials. The merging of photochemistry and reversible-deactivation radical polymerizations (RDRP) provides good reaction control and can simplify elaborate reaction protocols. These advantages open the doors to multidisciplinary fields going from composite materials to bio-applications. Photoinduced Electron/Energy Transfer Reversible Addition-Fragmentation Chain-Transfer (PET-RAFT) polymerization, proposed for the first time in 2014, presents significant advantages compared to other photochemical techniques in terms of applicability, cost, and sustainability. This review has the aim of providing to the readers the basic knowledge of PET-RAFT polymerization and explores the new possibilities that this innovative technique offers in terms of industrial applications, new materials production, and green conditions.
Collapse
Affiliation(s)
| | - Roberto Simonutti
- Department of Materials Science, Università Degli Studi di Milano-Bicocca, Via R. Cozzi, 55, 20125 Milan, Italy;
| |
Collapse
|
33
|
Zhou Y, Han S, Gu Y, Chen M. Facile synthesis of gradient copolymers enabled by droplet-flow photo-controlled reversible deactivation radical polymerization. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9946-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Corrigan N, Trujillo FJ, Xu J, Moad G, Hawker CJ, Boyer C. Divergent Synthesis of Graft and Branched Copolymers through Spatially Controlled Photopolymerization in Flow Reactors. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02715] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | | | - Jiangtao Xu
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Craig J. Hawker
- Materials Research Laboratory and Departments of Materials, Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
35
|
Namivandi-Zangeneh R, Wong EHH, Boyer C. Synthetic Antimicrobial Polymers in Combination Therapy: Tackling Antibiotic Resistance. ACS Infect Dis 2021; 7:215-253. [PMID: 33433995 DOI: 10.1021/acsinfecdis.0c00635] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antibiotic resistance is a critical global healthcare issue that urgently needs new effective solutions. While small molecule antibiotics have been safeguarding us for nearly a century since the discovery of penicillin by Alexander Fleming, the emergence of a new class of antimicrobials in the form of synthetic antimicrobial polymers, which was driven by the advances in controlled polymerization techniques and the desire to mimic naturally occurring antimicrobial peptides, could play a key role in fighting multidrug resistant bacteria in the near future. By harnessing the ability to control chemical and structural properties of polymers almost at will, synthetic antimicrobial polymers can be strategically utilized in combination therapy with various antimicrobial coagents in different formats to yield more potent (synergistic) outcomes. In this review, we present a short summary of the different combination therapies involving synthetic antimicrobial polymers, focusing on their combinations with nitric oxide, antibiotics, essential oils, and metal- and carbon-based inorganics.
Collapse
Affiliation(s)
- Rashin Namivandi-Zangeneh
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Edgar H. H. Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| |
Collapse
|
36
|
Gbian DL, Omri A. Current and novel therapeutic strategies for the management of cystic fibrosis. Expert Opin Drug Deliv 2021; 18:535-552. [PMID: 33426936 DOI: 10.1080/17425247.2021.1874343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Cystic fibrosis (CF), is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and affects thousands of people throughout the world. Lung disease is the leading cause of death in CF patients. Despite the advances in treatments, the management of CF mainly targets symptoms. Recent CFTR modulators however target common mutations in patients, alleviating symptoms of CF. Unfortunately, there is still no approved treatments for patients with rare mutations to date.Areas covered: This paper reviews current treatments of CF that mitigate symptoms and target genetic defects. The use of gene and drug delivery systems such as viral or non-viral vectors and nano-compounds to enhance CFTR expression and the activity of antimicrobials against chronic pulmonary infections respectively, will also be discussed.Expert opinion: Nano-compounds tackle biological barriers to drug delivery and revitalize antimicrobials, anti-inflammatory drugs and even genes delivery to CF patients. Gene therapy and gene editing are of particular interest because they have the potential to directly target genetic defects. Nanoparticles should be formulated to more specifically target epithelial cells, and biofilms. Finally, the development of more potent gene vectors to increase the duration of gene expression and reduce inflammation is a promising strategy to eventually cure CF.
Collapse
Affiliation(s)
- Douweh Leyla Gbian
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
37
|
Ng G, Jung K, Li J, Wu C, Zhang L, Boyer C. Screening RAFT agents and photocatalysts to mediate PET-RAFT polymerization using a high throughput approach. Polym Chem 2021. [DOI: 10.1039/d1py01258d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report a high throughput approach for the screening of RAFT agents and photocatalysts to mediate photoinduced electron/energy transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization.
Collapse
Affiliation(s)
- Gervase Ng
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kenward Jung
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jun Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Chenyu Wu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Liwen Zhang
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
38
|
Takahashi H, Caputo GA, Kuroda K. Amphiphilic polymer therapeutics: an alternative platform in the fight against antibiotic resistant bacteria. Biomater Sci 2021; 9:2758-2767. [DOI: 10.1039/d0bm01865a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amphiphilic antimicrobial polymers show promising potential as polymer therapeutics to fight drug resistant bacteria and biofilms.
Collapse
Affiliation(s)
- Haruko Takahashi
- Graduate School of Integrated Sciences for Life
- Hiroshima University
- Hiroshima 739-8526
- Japan
| | | | - Kenichi Kuroda
- Department of Biologic and Materials Sciences
- School of Dentistry
- University of Michigan
- Ann Arbor
- USA
| |
Collapse
|
39
|
Bray C, Li G, Postma A, Strover LT, Wang J, Moad G. Initiation of RAFT Polymerization: Electrochemically Initiated RAFT Polymerization in Emulsion (Emulsion eRAFT), and Direct PhotoRAFT Polymerization of Liquid Crystalline Monomers. Aust J Chem 2021. [DOI: 10.1071/ch20260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We report on two important advances in radical polymerization with reversible addition–fragmentation chain transfer (RAFT polymerization). (1) Electrochemically initiated emulsion RAFT (eRAFT) polymerization provides rapid polymerization of styrene at ambient temperature. The electrolytes and mediators required for eRAFT are located in the aqueous continuous phase separate from the low-molar-mass-dispersity macroRAFT agent mediator and product in the dispersed phase. Use of a poly(N,N-dimethylacrylamide)-block-poly(butyl acrylate) amphiphilic macroRAFT agent composition means that no added surfactant is required for colloidal stability. (2) Direct photoinitiated (visible light) RAFT polymerization provides an effective route to high-purity, low-molar-mass-dispersity, side chain liquid-crystalline polymers (specifically, poly(4-biphenyl acrylate)) at high monomer conversion. Photoinitiation gives a product free from low-molar-mass initiator-derived by-products and with minimal termination. The process is compared with thermal dialkyldiazene initiation in various solvents. Numerical simulation was found to be an important tool in discriminating between the processes and in selecting optimal polymerization conditions.
Collapse
|
40
|
Ng G, Li M, Yeow J, Jung K, Pester CW, Boyer C. Benchtop Preparation of Polymer Brushes by SI-PET-RAFT: The Effect of the Polymer Composition and Structure on Inhibition of a Pseudomonas Biofilm. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55243-55254. [PMID: 33233878 DOI: 10.1021/acsami.0c15221] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report a high-throughput method for producing surface-tethered polymeric brushes on glass substrates via surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer polymerization (SI-PET-RAFT). Due to its excellent oxygen tolerance, SI-PET-RAFT allows brush growth using low reagent volumes (30 μL) without prior degassing. An initial 28 homopolymer brush library was successfully prepared and screened with respect to their antifouling performance. The high-throughput approach was further exploited to expand the library to encompass statistical, gradient, and block architectures to investigate the effect of monomer composition and distribution using two monomers of disparate performance. In this manner, the degree of attachment from Gram-negative Pseudomonas aeruginosa (PA) bacterial biofilms could be tuned between the bounds set by the homopolymer brushes.
Collapse
Affiliation(s)
- Gervase Ng
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052 Australia
| | - Mingxiao Li
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052 Australia
| | - Kenward Jung
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052 Australia
| | - Christian W Pester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052 Australia
| |
Collapse
|
41
|
Liu K, Corrigan N, Postma A, Moad G, Boyer C. A Comprehensive Platform for the Design and Synthesis of Polymer Molecular Weight Distributions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01954] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ke Liu
- Centre for Advanced Macromolecular Design (CAMD) and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD) and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
- Australian Centre for Nanomedicine (ACN) and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
| | - Almar Postma
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia
| | - Graeme Moad
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
- Australian Centre for Nanomedicine (ACN) and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
42
|
Liu G, Pan R, Wei Y, Tao L. The Hantzsch Reaction in Polymer Chemistry: From Synthetic Methods to Applications. Macromol Rapid Commun 2020; 42:e2000459. [PMID: 33006198 DOI: 10.1002/marc.202000459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/08/2020] [Indexed: 12/11/2022]
Abstract
The Hantzcsh reaction is a robust four-component reaction for the efficient generation of 1,4-dihydropyridine (1,4-DHP) derivatives. Recently, this reaction has been introduced into polymer chemistry in order to develop polymers having 1,4-DHP structures in the main and/or side chains. The 1,4-DHP groups confer new properties/functions to the polymers. This mini-review summarizes the recent studies on the development of new functional polymers by using the Hantzsch reaction. Several synthetic approaches, including polycondensation, post-polymerization modification (PPM), monomer to polymer strategy, and one-pot strategy are introduced; different applications (protein conjugation, formaldehyde detection, drug carrier, and anti-bacterial adhesion) of the resulting polymers are emphasized. Meanwhile, the future development of the Hantzsch reaction in exploring new functional polymers is also discussed.
Collapse
Affiliation(s)
- Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruihao Pan
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
43
|
Nothling MD, Fu Q, Reyhani A, Allison‐Logan S, Jung K, Zhu J, Kamigaito M, Boyer C, Qiao GG. Progress and Perspectives Beyond Traditional RAFT Polymerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001656. [PMID: 33101866 PMCID: PMC7578854 DOI: 10.1002/advs.202001656] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/17/2020] [Indexed: 05/09/2023]
Abstract
The development of advanced materials based on well-defined polymeric architectures is proving to be a highly prosperous research direction across both industry and academia. Controlled radical polymerization techniques are receiving unprecedented attention, with reversible-deactivation chain growth procedures now routinely leveraged to prepare exquisitely precise polymer products. Reversible addition-fragmentation chain transfer (RAFT) polymerization is a powerful protocol within this domain, where the unique chemistry of thiocarbonylthio (TCT) compounds can be harnessed to control radical chain growth of vinyl polymers. With the intense recent focus on RAFT, new strategies for initiation and external control have emerged that are paving the way for preparing well-defined polymers for demanding applications. In this work, the cutting-edge innovations in RAFT that are opening up this technique to a broader suite of materials researchers are explored. Emerging strategies for activating TCTs are surveyed, which are providing access into traditionally challenging environments for reversible-deactivation radical polymerization. The latest advances and future perspectives in applying RAFT-derived polymers are also shared, with the goal to convey the rich potential of RAFT for an ever-expanding range of high-performance applications.
Collapse
Affiliation(s)
- Mitchell D. Nothling
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Qiang Fu
- Centre for Technology in Water and Wastewater Treatment (CTWW)School of Civil and Environmental EngineeringUniversity of Technology SydneyUltimoNSW2007Australia
| | - Amin Reyhani
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Stephanie Allison‐Logan
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Kenward Jung
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringUNWSSydneyNSW2052Australia
| | - Jian Zhu
- College of ChemistryChemical Engineering and Material ScienceDepartment of Polymer Science and EngineeringSoochow UniversitySuzhou215123China
| | - Masami Kamigaito
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8603Japan
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringUNWSSydneyNSW2052Australia
| | - Greg G. Qiao
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| |
Collapse
|