1
|
Clarke BR, Hu X, Petek E, Witt CL, Katsumata R, Watkins JJ, Crosby AJ, Tew GN. Wet/Dry Bottlebrush Pressure Sensitive Adhesives via a Dangling Defect-Driven Design. ACS APPLIED MATERIALS & INTERFACES 2025; 17:30140-30148. [PMID: 40347146 DOI: 10.1021/acsami.5c05934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
A series of bottlebrush pressure sensitive adhesives (PSAs) containing progressively greater numbers of large dangling ends were synthesized using ring-opening metathesis polymerization. These defects were engineered into PSAs by promoting the formation of loop defects and by manipulating the kinetic chain length such that large dangling defects are covalently bound to the bulk. The unique structure of these samples is shown to promote adhesion at interfaces by maximizing surface area contact and increasing local van der Waals forces. This design philosophy (termed defect-driven design, D3) provides an easy route to synthesize bottlebrush PSAs ∼6 times stronger than commercial VHB1000 tape. Furthermore, the inherent tendency of water to dewet on poly(dimethylsiloxane) PSAs is exacerbated in these samples, resulting in PSAs capable of indefinite cycles of wet-dry-wet adhesion (tested up to 50 cycles, 7 months apart). Further development of the D3 concept is expected to result in increased applications (e.g., dielectric actuators, wearable electronics, and especially soft robotics) as the unique design parameters are further explored.
Collapse
Affiliation(s)
- Brandon R Clarke
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Xin Hu
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Evon Petek
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Connor L Witt
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Reika Katsumata
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - James J Watkins
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Alfred J Crosby
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Kim K, Grummon BC, Thrasher CJ, Macfarlane RJ. Regio-Selective Mechanical Enhancement of Polymer-Grafted Nanoparticle Composites via Light-Mediated Crosslinking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410493. [PMID: 39871745 PMCID: PMC11899498 DOI: 10.1002/adma.202410493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/30/2024] [Indexed: 01/29/2025]
Abstract
Polymer-brush-grafted nanoparticles (PGNPs) that can be covalently crosslinked post-processing enable the fabrication of mechanically robust and chemically stable polymer nanocomposites with high inorganic filler content. Modifying PGNP brushes to append UV-activated crosslinkers along the polymer chains would permit a modular crosslinking strategy applicable to a diverse range of nanocomposite compositions. Further, light-activated crosslinking reactions enable spatial control of crosslink density to program intentionally inhomogeneous mechanical responses. Here, a method of synthesizing composites using UV-crosslinkable brush-coated nanoparticles (referred to as UV-XNPs) is introduced that can be applied to various monomer compositions by incorporating photoinitiators into the polymer brushes. UV crosslinking of processed UV-XNP structures can increase their tensile modulus up to 15-fold without any noticeable alteration to their appearance or shape. By using photomasks to alter UV intensity across a sample, intentionally designed inhomogeneities in crosslink density result in predetermined anisotropic shape changes under strain. This unique capability of UV-XNP materials is applied to stiffness-patterned flexible electronic substrates that prevent the delamination of rigid components under deformation. The potential of UV-XNPs as functional, soft device components is further demonstrated by wearable devices that can be modified post-fabrication to customize their performance, permitting the ability to add functionality to existing device architectures.
Collapse
Affiliation(s)
- Kyungtae Kim
- Department of Materials Science and EngineeringMassachusetts Institute of Technology (MIT)77 Massachusetts AvenueCambridgeMA02139USA
| | - Benjamin C. Grummon
- Department of ChemistryMassachusetts Institute of Technology (MIT)77 Massachusetts AvenueCambridgeMA02139USA
| | - Carl J. Thrasher
- Department of Materials Science and EngineeringMassachusetts Institute of Technology (MIT)77 Massachusetts AvenueCambridgeMA02139USA
| | - Robert J. Macfarlane
- Department of Materials Science and EngineeringMassachusetts Institute of Technology (MIT)77 Massachusetts AvenueCambridgeMA02139USA
| |
Collapse
|
3
|
Li SY, Duan BH, Liu N, Luo J, Chen Z, Wu ZQ. Helical Star-Shaped Bottlebrush Polymers: From Controlled Synthesis to Tunable Photoluminescence and Circularly Polarized Luminescence. ACS Macro Lett 2024; 13:1396-1402. [PMID: 39377270 DOI: 10.1021/acsmacrolett.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The controlled synthesis of star-shaped bottlebrush polymers with tunable topologies is a challenge. However, such materials may exhibit distinct photoluminescence properties. Bottlebrush polymers have polymerization-induced emission (PIE) properties due to their aggregated side chains, and aggregation-induced emission (AIE) is also a unique luminescent property. In this work, we prepared a variety of highly active alkyne Pd catalysts and polymerized poly(L/D-lactic acid) macromonomers containing polymerizable phenylisocyanide groups as end groups to obtain a variety of topologically structured bottlebrush polymers with controllable molecular weights and narrow molecular weight distributions. Bottlebrush polymers with tetraphenyl ethylene (TPE) units as the core exhibit tunable photoluminescence and circularly polarized luminescence properties. We propose that such properties are due to the unique AIE characteristics of the TPE unit combined with the PIE characteristics of the bottlebrush polymer.
Collapse
Affiliation(s)
- Shi-Yi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bing-Hui Duan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Jing Luo
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi, Hefei, Anhui 230022, China
| | - Zheng Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
4
|
Elardo MJ, Levenson AM, Kitos Vasconcelos AP, Pomfret MN, Golder MR. A general synthesis of cyclic bottlebrush polymers with enhanced mechanical properties via graft-through ring expansion metathesis polymerization. Chem Sci 2024; 15:d4sc06050d. [PMID: 39360007 PMCID: PMC11440813 DOI: 10.1039/d4sc06050d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Bottlebrush polymers represent an important class of macromolecular architectures, with applications ranging from drug delivery to organic electronics. While there is an abundance of literature describing the synthesis, structure, and applications of linear bottlebrush polymers using ring-opening metathesis polymerization (ROMP), there are comparatively less reports on their cyclic counterparts. This lack of research is primarily due to the difficulty in synthesizing cyclic bottlebrush polymers, as extensions of typical routes towards linear bottlebrush polymers (i.e., "grafting-through" polymerizations of macromonomers with ROMP) produce only ultrahigh molar mass cyclic bottlebrush polymers with poor molar mass control. Herein, we report a ring-expansion metathesis polymerization (REMP) approach to cyclic bottlebrush polymers via a "grafting-through" approach utilizing the active pyr-CB6 initiator developed in our lab. The resulting polymers, characterized via GPC-MALS-IV, are shown to have superior molar mass control across a range of target backbone lengths. The cyclic materials are also found to have superior mechanical properties when compared to their linear counterparts, as assessed by ball-mill grinding and compression testing experiments.
Collapse
Affiliation(s)
- Matthew J Elardo
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Adelaide M Levenson
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Ana Paula Kitos Vasconcelos
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Meredith N Pomfret
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Matthew R Golder
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| |
Collapse
|
5
|
Clarke BR, Witt CL, Ilton M, Crosby AJ, Watkins JJ, Tew GN. Bottlebrush Networks: A Primer for Advanced Architectures. Angew Chem Int Ed Engl 2024; 63:e202318220. [PMID: 38588310 PMCID: PMC11634236 DOI: 10.1002/anie.202318220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Bottlebrush networks (BBNs) are an exciting new class of materials with interesting physical properties derived from their unique architecture. While great strides have been made in our fundamental understanding of bottlebrush polymers and networks, an interdisciplinary approach is necessary for the field to accelerate advancements. This review aims to act as a primer to BBN chemistry and physics for both new and current members of the community. In addition to providing an overview of contemporary BBN synthetic methods, we developed a workflow and desktop application (LengthScale), enabling bottlebrush physics to be more approachable. We conclude by addressing several topical issues and asking a series of pointed questions to stimulate conversation within the community.
Collapse
Affiliation(s)
- Brandon R. Clarke
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Connor L. Witt
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Mark Ilton
- Department of Physics, Harvey Mudd College, Claremont, CA 91711, United States
| | - Alfred J. Crosby
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - James J. Watkins
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N. Tew
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
6
|
Adeli Y, Raman Venkatesan T, Mezzenga R, Nüesch FA, Opris DM. Synthesis of Bottlebrush Polymers with Spontaneous Self-Assembly for Dielectric Generators. ACS APPLIED POLYMER MATERIALS 2024; 6:4999-5010. [PMID: 38752017 PMCID: PMC11091855 DOI: 10.1021/acsapm.3c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024]
Abstract
Cross-linked bottlebrush polymers received significant attention as dielectrics in transducers due to their unique softness and strain stiffening caused by their structure. Despite some progress, there is still a great challenge in increasing their dielectric permittivity beyond 3.5 and cross-linking them to defect-free ultrathin films efficiently under ambient conditions. Here, we report the synthesis of bottlebrush copolymers based on ring-opening metathesis polymerization (ROMP) starting from a 5-norbornene-2-carbonitrile and a norbornene modified with a poly(dimethylsiloxane) (PDMS) chain as a macromonomer. The resulting copolymer was subjected to a postpolymerization modification, whereby the double bonds were used both for functionalization with thiopropionitrile and subsequent cross-linking via a thiol-ene reaction. The solutions of both bottlebrush copolymers formed free-standing elastic films by simple casting. DMA and broadband impedance spectroscopy revealed two glass transition temperatures uncommon for a random copolymer. The self-segregation of the nonpolar PDMS chains and the polynorbornane backbone is responsible for this and is supported by the interfacial polarization observed in broadband impedance spectroscopy and the scattering peaks observed in small-angle X-ray scattering (SAXS). Additionally, the modified bottlebrush copolymer was cross-linked to an elastomer that exhibits increased dielectric permittivity and good mechanical properties with significant strain stiffening, an attractive property of dielectric elastomer generators. It has a relative permittivity of 5.24, strain at break of 290%, elastic modulus at 10% strain of 380 kPa, a breakdown field of 62 V μm-1, and a small actuation of 5% at high electric fields of 48.5 V μm-1. All of these characteristics are attractive for dielectric elastomer generator applications. The current work is a milestone in designing functional elastomers based on bottlebrush polymers for transducer applications.
Collapse
Affiliation(s)
- Yeerlan Adeli
- Laboratory
for Functional Polymers, Swiss Federal Laboratories
for Materials Science and Technology Empa, Ueberlandstr. 129, CH-8600 Dübendorf, Switzerland
- Institute
of Chemical Sciences and Engineering, Ecole
Polytechnique Federale de Lausanne, EPFL, Station 6, CH-1015 Lausanne, Switzerland
| | - Thulasinath Raman Venkatesan
- Laboratory
for Functional Polymers, Swiss Federal Laboratories
for Materials Science and Technology Empa, Ueberlandstr. 129, CH-8600 Dübendorf, Switzerland
| | - Raffaele Mezzenga
- Department
of Health Sciences and Technology, ETH Zürich,
Laboratory of Food and Soft Materials, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Frank A. Nüesch
- Laboratory
for Functional Polymers, Swiss Federal Laboratories
for Materials Science and Technology Empa, Ueberlandstr. 129, CH-8600 Dübendorf, Switzerland
- Institute
of Chemical Sciences and Engineering, Ecole
Polytechnique Federale de Lausanne, EPFL, Station 6, CH-1015 Lausanne, Switzerland
| | - Dorina M. Opris
- Laboratory
for Functional Polymers, Swiss Federal Laboratories
for Materials Science and Technology Empa, Ueberlandstr. 129, CH-8600 Dübendorf, Switzerland
- Department
of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| |
Collapse
|
7
|
Ajvazi E, Bauer F, Strasser P, Brüggemann O, Preuer R, Kracalik M, Hild S, Abbasi M, Graz I, Teasdale I. Inorganic Bottlebrush and Comb Polymers as a Platform for Supersoft, Solvent-Free Elastomers. ACS POLYMERS AU 2024; 4:56-65. [PMID: 38371734 PMCID: PMC10870749 DOI: 10.1021/acspolymersau.3c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 02/20/2024]
Abstract
Due to their unique rheological and mechanical properties, bottlebrush polymers are inimitable components of biological and synthetic systems such as cartilage and ultrasoft elastomers. However, while their rheological properties can be precisely controlled through their macromolecular structures, the current chemical spectrum available is limited to a handful of synthetic polymers with aliphatic carbon backbones. Herein we design and synthesize a series of inorganic bottlebrush polymers based on a unique combination of polydimethylsiloxane (PDMS) and polyphosphazene (PPz) chemistry. This non-carbon-based platform allows for simple variation of the significant architectural dimensions of bottlebrush-polymer-based elastomers. Grafting PDMS to PPz and vice versa also allows us to further exploit the unique properties of these polymers combined in a single material. These novel hybrid bottlebrush polymers were cured to give supersoft, solvent-free elastomers. We systematically studied the effect of architectural parameters and chemical functionality on their rheological properties. Besides forming supersoft elastomers, the energy dissipation characteristics of the elastomers were observed to be considerably higher than those for PDMS-based elastomers. Hence this work introduces a robust synthetic platform for solvent-free supersoft elastomers with potential applications as biomimetic damping materials.
Collapse
Affiliation(s)
- Edip Ajvazi
- Institute
of Polymer Chemistry, Johannes Kepler University
Linz, Altenberger Straße
69, 4040 Linz, Austria
- Christian
Doppler Laboratory for Soft Structures for Vibration Isolation and
Impact Protection (ADAPT), School of Education, STEM Education, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Felix Bauer
- Institute
of Polymer Chemistry, Johannes Kepler University
Linz, Altenberger Straße
69, 4040 Linz, Austria
| | - Paul Strasser
- Institute
of Polymer Chemistry, Johannes Kepler University
Linz, Altenberger Straße
69, 4040 Linz, Austria
| | - Oliver Brüggemann
- Institute
of Polymer Chemistry, Johannes Kepler University
Linz, Altenberger Straße
69, 4040 Linz, Austria
| | - Rene Preuer
- Christian
Doppler Laboratory for Soft Structures for Vibration Isolation and
Impact Protection (ADAPT), School of Education, STEM Education, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Milan Kracalik
- Institute
of Polymer Science, Johannes Kepler University
Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Sabine Hild
- Institute
of Polymer Science, Johannes Kepler University
Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Mahdi Abbasi
- Borealis
Polyolefine GmbH, Innovation Headquarters, St.-Peter-Straße 25, 4021 Linz, Austria
| | - Ingrid Graz
- Christian
Doppler Laboratory for Soft Structures for Vibration Isolation and
Impact Protection (ADAPT), School of Education, STEM Education, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Ian Teasdale
- Institute
of Polymer Chemistry, Johannes Kepler University
Linz, Altenberger Straße
69, 4040 Linz, Austria
| |
Collapse
|
8
|
Adeli Y, Owusu F, Nüesch FA, Opris DM. On-Demand Cross-Linkable Bottlebrush Polymers for Voltage-Driven Artificial Muscles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20410-20420. [PMID: 37042624 PMCID: PMC10141291 DOI: 10.1021/acsami.2c23026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Dielectric elastomer actuators (DEAs) generate motion resembling natural muscles in reliability, adaptability, elongation, and frequency of operation. They are highly attractive in implantable soft robots or artificial organs. However, many applications of such devices are hindered by the high driving voltage required for operation, which exceeds the safety threshold for the human body. Although the driving voltage can be reduced by decreasing the thickness and the elastic modulus, soft materials are prone to electromechanical instability (EMI), which causes dielectric breakdown. The elastomers made by cross-linking bottlebrush polymers are promising for achieving DEAs that suppress EMI. In previous work, they were chemically cross-linked using an in situ free-radical UV-induced polymerization, which is oxygen-sensitive and does not allow the formation of thin films. Therefore, the respective actuators were operated at voltages above 4000 V. Herein, macromonomers that can be polymerized by ring-opening metathesis polymerization and subsequently cross-linked via a UV-induced thiol-ene click reaction are developed. They allow us to fast cross-link defect-free thin films with a thickness below 100 μm. The dielectric films give up to 12% lateral actuation at 1000 V and survive more than 10,000 cycles at frequencies up to 10 Hz. The easy and efficient preparation approach of the defect-free thin films under air provides easy accessibility to bottlebrush polymeric materials for future research. Additionally, the desired properties, actuation under low voltage, and long lifetime revealed the potential of the developed materials in soft robotic implantable devices. Furthermore, the C-C double bonds in the polymer backbone allow for chemical modification with polar groups and increase the materials' dielectric permittivity to a value of 5.5, which is the highest value of dielectric permittivity for a cross-linked bottlebrush polymer.
Collapse
Affiliation(s)
- Yeerlan Adeli
- Laboratory
for Functional Polymers, Swiss Federal Laboratories
for Materials Science and Technology Empa, Ueberlandstr. 129, CH-8600 Dübendorf, Switzerland
- Institute
of Chemical Sciences and Engineering, Ecole
Polytechnique Federale de Lausanne, EPFL, Station 6, CH-1015 Lausanne, Switzerland
| | - Francis Owusu
- Laboratory
for Functional Polymers, Swiss Federal Laboratories
for Materials Science and Technology Empa, Ueberlandstr. 129, CH-8600 Dübendorf, Switzerland
- Institute
of Chemical Sciences and Engineering, Ecole
Polytechnique Federale de Lausanne, EPFL, Station 6, CH-1015 Lausanne, Switzerland
| | - Frank A. Nüesch
- Laboratory
for Functional Polymers, Swiss Federal Laboratories
for Materials Science and Technology Empa, Ueberlandstr. 129, CH-8600 Dübendorf, Switzerland
- Institute
of Chemical Sciences and Engineering, Ecole
Polytechnique Federale de Lausanne, EPFL, Station 6, CH-1015 Lausanne, Switzerland
| | - Dorina M. Opris
- Laboratory
for Functional Polymers, Swiss Federal Laboratories
for Materials Science and Technology Empa, Ueberlandstr. 129, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
9
|
Xu P, Wang S, Lin A, Min HK, Zhou Z, Dou W, Sun Y, Huang X, Tran H, Liu X. Conductive and elastic bottlebrush elastomers for ultrasoft electronics. Nat Commun 2023; 14:623. [PMID: 36739447 PMCID: PMC9899285 DOI: 10.1038/s41467-023-36214-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/18/2023] [Indexed: 02/06/2023] Open
Abstract
Understanding biological systems and mimicking their functions require electronic tools that can interact with biological tissues with matched softness. These tools involve biointerfacing materials that should concurrently match the softness of biological tissue and exhibit suitable electrical conductivities for recording and reading bioelectronic signals. However, commonly employed intrinsically soft and stretchable materials usually contain solvents that limit stability for long-term use or possess low electronic conductivity. To date, an ultrasoft (i.e., Young's modulus <30 kPa), conductive, and solvent-free elastomer does not exist. Additionally, integrating such ultrasoft and conductive materials into electronic devices is poorly explored. This article reports a solvent-free, ultrasoft and conductive PDMS bottlebrush elastomer (BBE) composite with single-wall carbon nanotubes (SWCNTs) as conductive fillers. The conductive SWCNT/BBE with a filler concentration of 0.4 - 0.6 wt% reveals an ultralow Young's modulus (<11 kPa) and satisfactory conductivity (>2 S/m) as well as adhesion property. Furthermore, we fabricate ultrasoft electronics based on laser cutting and 3D printing of conductive and non-conductive BBEs and demonstrate their potential applications in wearable sensing, soft robotics, and electrophysiological recording.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 3G8, Canada
| | - Shaojia Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 3G8, Canada
| | - Angela Lin
- Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Hyun-Kee Min
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Zhanfeng Zhou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 3G8, Canada
| | - Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 3G8, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 3G8, Canada
| | - Xi Huang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Helen Tran
- Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 3G8, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada.
| |
Collapse
|
10
|
Kamble YL, Walsh DJ, Guironnet D. Precision of Architecture-Controlled Bottlebrush Polymer Synthesis: A Monte Carlo Analysis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Yash Laxman Kamble
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois61801, United States
| | - Dylan J. Walsh
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois61801, United States
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois61801, United States
| |
Collapse
|
11
|
Xie R, Lapkriengkri I, Pramanik NB, Mukherjee S, Blankenship JR, Albanese K, Wang H, Chabinyc ML, Bates CM. Hydrogen-Bonding Bottlebrush Networks: Self-Healing Materials from Super-Soft to Stiff. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Clarke BR, Kim H, Ilton M, Watkins JJ, Crosby AJ, Tew GN. The Impact of Polymerization Chemistry on the Mechanical Properties of Poly(dimethylsiloxane) Bottlebrush Elastomers. Macromolecules 2022. [PMID: 37502106 PMCID: PMC10373355 DOI: 10.1021/acs.macromol.2c01332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We compare the low-strain mechanical properties of bottlebrush elastomers (BBEs) synthesized using ring-opening metathesis and free radical polymerization. Through comparison of experimentally measured elastic moduli and those predicted by an ideal, affine model, we evaluate the efficiency of our networks in forming stress-supporting strands. This comparison allowed us to develop a structural efficiency ratio that facilitates the prediction of mechanical properties relative to polymerization chemistry (e.g., softer BBEs when polymerizing under dilute conditions). This work highlights the impact that polymerization chemistry has on the structural efficiency ratio and the resultant mechanical properties of BBEs with identical side chains, providing another "knob" by which to control polymer network properties.
Collapse
Affiliation(s)
- Brandon R. Clarke
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hyemin Kim
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Mark Ilton
- Department of Physics, Harvey Mudd College, Claremont, California 91711, United States
| | - James J. Watkins
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Alfred J. Crosby
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N. Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
13
|
Jang J, Choi C, Kim KW, Okayama Y, Lee JH, Read de Alaniz J, Bates CM, Kim JK. Triboelectric Nanogenerators: Enhancing Performance by Increasing the Charge-Generating Layer Compressibility. ACS Macro Lett 2022; 11:1291-1297. [DOI: 10.1021/acsmacrolett.2c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junho Jang
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
| | - Chungryong Choi
- Department of Polymer Science and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk39177, Republic of Korea
| | - Keon-Woo Kim
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
| | | | - Ju Hyun Lee
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
| | | | | | - Jin Kon Kim
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
| |
Collapse
|
14
|
Nian S, Cai LH. Dynamic Mechanical Properties of Self-Assembled Bottlebrush Polymer Networks. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shifeng Nian
- Soft Biomatter Laboratory, Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Li-Heng Cai
- Soft Biomatter Laboratory, Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
15
|
Abstract
We report the synthesis of novel poly(ethylene glycol) and poly(dimethyl siloxane) (PEG and PDMS, respectively) bottlebrush amphiphilic polymer co-networks (B-APCNs) with high gel fractions by a grafting-through ring-opening metathesis polymerization. By varying the volume fraction of PEG (ϕPEG), we alter the crystallinity of the networks, achieving complete suppression of PEG crystallinity at ϕPEG=0.35. Furthermore, we show that the crystallinity of these networks can be tuned to alter their moduli. Through dynamic mechanical analysis, we show that the storage and loss moduli of networks with completely suppressed crystallinity (ϕPEG=0.35) behave similarly to a PDMS homopolymer bottlebrush network. These bottlebrush networks represent an unexplored architecture for the field of amphiphilic polymer co-networks.
Collapse
Affiliation(s)
- Brandon R. Clarke
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N. Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
16
|
Blosch SE, Scannelli SJ, Alaboalirat M, Matson JB. Complex Polymer Architectures Using Ring-Opening Metathesis Polymerization: Synthesis, Applications, and Practical Considerations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Sarah E. Blosch
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Samantha J. Scannelli
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Mohammed Alaboalirat
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John B. Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
17
|
Clarke BR, Tew GN. Synthesis and characterization of poly(ethylene glycol) bottlebrush networks via ring-opening metathesis polymerization. JOURNAL OF POLYMER SCIENCE 2022; 60:1501-1510. [PMID: 35967758 PMCID: PMC9373913 DOI: 10.1002/pol.20210865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022]
Abstract
Herein it is reported how the overlap concentration (C*) can be used to overcome crosslinking due to diol impurities in commercial PEG, allowing for the synthesize of bottlebrush polymers with good control over molecular weight. Additionally, PEG-based bottlebrush networks are synthesized via ROMP, attaining high conversions with minimal sol fractions (<2%). The crystallinity and mechanical properties of these networks are then further altered by solvent swelling with phosphate buffer solution (PBS) and 1-ethyl-3-methylimidazolium ethyl sulfate/DCM cosolvents. The syntheses reported here highlight the potential of the bottlebrush network architecture for use in the rational design of new materials.
Collapse
Affiliation(s)
- Brandon R Clarke
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| |
Collapse
|
18
|
Maw M, Morgan BJ, Dashtimoghadam E, Tian Y, Bersenev EA, Maryasevskaya AV, Ivanov DA, Matyjaszewski K, Dobrynin AV, Sheiko SS. Brush Architecture and Network Elasticity: Path to the Design of Mechanically Diverse Elastomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mitchell Maw
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Benjamin J. Morgan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Erfan Dashtimoghadam
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yuan Tian
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Egor A. Bersenev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Semenov Av. 1, Chernogolovka 142432 Moscow Region, Russian Federation
| | - Alina V. Maryasevskaya
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Semenov Av. 1, Chernogolovka 142432 Moscow Region, Russian Federation
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/51, Moscow 119991, Russia
| | - Dimitri A. Ivanov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Semenov Av. 1, Chernogolovka 142432 Moscow Region, Russian Federation
- CNRS UMR 7361, Institut de Sciences des Matériaux de Mulhouse, IS2M, 15, rue Jean Starcky, F-68057 Mulhouse, France
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/51, Moscow 119991, Russia
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Andrey V. Dobrynin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sergei S. Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
19
|
Peng Y, Liu S, Wang L, Xu Y, Wu Z, Chen H. Oxygen-demanding Photocontrolled RAFT Polymerization under Ambient Conditions. Macromol Rapid Commun 2022; 43:e2100920. [PMID: 35138013 DOI: 10.1002/marc.202100920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/05/2022] [Indexed: 11/06/2022]
Abstract
A photocontrolled reversible addition-fragmentation chain transfer (RAFT) process is developed by initiating polymerization through a 1,3-diaminopropane-triethylborane (DAPTB)-diphenyl iodonium salt (Ph2 I+ ) complex (DAPTB/Ph2 I+ ) under ambient temperature and atmosphere. Upon demand, this air-stable DAPTB/Ph2 I+ complex is photolyzed to liberate a reactive triethylborane that consumes atmospheric oxygen and generates ethyl radicals, which initiate and mediate RAFT polymerization. Controlled RAFT polymerization is thus achieved without any prior deoxygenation using a novel RAFT chain transfer agent, BP-FSBC, which contains both benzophenone and sulfonyl fluoride moieties. Furthermore, the kinetics of polymerization reveal that the reaction process is rapid, and well-defined polymers are produced by a 61% conversion of 2-hydroxyethyl acrylate (HEA) within 7 minutes and 77% conversion of N,N-dimethylacrylamide (DMA) within 10.5 minutes. The temporal and spatial control of this photopolymerization is also demonstrated by an "on/off" switch of UV irradiation and a painting-on-a-surface approach, respectively. In addition, active chain ends are demonstrated by preparing block copolymers by chain extension and click sulfur(VI)-fluoride exchange (SuFEx) postreaction using RAFT-derived macrochain transfer agents. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yao Peng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Shengjie Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Ling Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Zhaoqiang Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
20
|
Self J, Reynolds VG, Blankenship J, Mee E, Guo J, Albanese K, Xie R, Hawker CJ, de Alaniz JR, Chabinyc ML, Bates CM. Carbon Nanotube Composites with Bottlebrush Elastomers for Compliant Electrodes. ACS POLYMERS AU 2022; 2:27-34. [PMID: 36855747 PMCID: PMC9954388 DOI: 10.1021/acspolymersau.1c00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Wearable electronics and biointerfacing technology require materials that are both compliant and conductive. The typical design strategy exploits polymer composites containing conductive particles, but the addition of a hard filler generally leads to a substantial increase in modulus that is not well-matched to biological tissue. Here, we report a new class of supersoft, conductive composites comprising carbon nanotubes (CNT) embedded in bottlebrush polymer networks. By virtue of the bottlebrush polymer architecture, these materials are several orders of magnitude softer than comparable composites in the literature involving linear polymer networks. For example, a CNT content of 0.25 wt % yields a shear modulus of 66 kPa while maintaining a typical conductivity for a CNT composite (ca. 10-2 S/m). An added benefit of this bottlebrush matrix chemistry is the presence of dynamic polyester bonds that facilitate thermal (re)processing. This unique strategy of designing soft composites provides new opportunities to tailor the structure and properties of sustainable advanced materials.
Collapse
Affiliation(s)
- Jeffrey
L. Self
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Veronica G. Reynolds
- Materials
Department, University of California, Santa Barbara, California 93106, United States
| | - Jacob Blankenship
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Erin Mee
- Materials
Department, University of California, Santa Barbara, California 93106, United States
| | - Jiaqi Guo
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Kaitlin Albanese
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Renxuan Xie
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Craig J. Hawker
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
- Materials
Department, University of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Michael L. Chabinyc
- Materials
Department, University of California, Santa Barbara, California 93106, United States
| | - Christopher M. Bates
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
- Materials
Department, University of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
21
|
Kim KH, Nam J, Choi J, Seo M, Bang J. From macromonomers to bottlebrush copolymers with sequence control: synthesis, properties, and applications. Polym Chem 2022. [DOI: 10.1039/d2py00126h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bottlebrush polymers (BBPs) are a type of comb-like macromolecules with densely grafted polymeric sidechains attached to the polymer backbones, and many intriguing properties and applications have been demonstrated due to...
Collapse
|
22
|
Len’shina NA, Shurygina MP, Chesnokov SA. Photoreduction Reaction of Carbonyl-Containing Compounds in the Synthesis and Modification of Polymers. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421060130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Xu S, Ma W, Zhou H, Zhang Y, Jia H, Xu J, Jiang P, Wang X, Zhao W. A Novel Imide-Bridged Polysiloxane Membrane Was Prepared via One-Pot Hydrosilylation Reaction for O 2/N 2 Separation. ACS OMEGA 2021; 6:19553-19558. [PMID: 34368541 PMCID: PMC8340101 DOI: 10.1021/acsomega.1c01964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The synthesis of poly(methyhydrosiloxane) (PMHS) and N,N'-bis(3-allyl)pyromellitic diimide was optimized for O2/N2 separation. The membrane exhibits excellent mechanical and thermal properties and shows an O2/N2 selectivity of up to 4.44 with an O2 permeability of 31.0 Barrer; compared with polydimethylsiloxane (PDMS) and pure polyimide (PI) membranes, the separation selectivity shows a 107% increase for PDMS, and the permeation shows a 660% increase for pure PI. The obtained results were well above the ones reported on the literature for similar conditions opening the door for the preparation of a stable polysiloxane (PMHS-I) gas separation membrane with extraordinary O2/N2 separation performance.
Collapse
Affiliation(s)
- Shuangping Xu
- College
of Materials Science and Engineering, Heilongjiang Provinces Key Laboratory
of Polymeric Composite materials, Qiqihar
University, Wenhua Street, Qiqihar 161006, China
| | - Wenqiang Ma
- College
of Materials Science and Engineering, Heilongjiang Provinces Key Laboratory
of Polymeric Composite materials, Qiqihar
University, Wenhua Street, Qiqihar 161006, China
| | - Hailiang Zhou
- College
of Materials Science and Engineering, Heilongjiang Provinces Key Laboratory
of Polymeric Composite materials, Qiqihar
University, Wenhua Street, Qiqihar 161006, China
| | - Yushu Zhang
- College
of Materials Science and Engineering, Heilongjiang Provinces Key Laboratory
of Polymeric Composite materials, Qiqihar
University, Wenhua Street, Qiqihar 161006, China
| | - Hongge Jia
- College
of Materials Science and Engineering, Heilongjiang Provinces Key Laboratory
of Polymeric Composite materials, Qiqihar
University, Wenhua Street, Qiqihar 161006, China
| | - Jingyu Xu
- College
of Materials Science and Engineering, Heilongjiang Provinces Key Laboratory
of Polymeric Composite materials, Qiqihar
University, Wenhua Street, Qiqihar 161006, China
- Liaoning
Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian, Liaoning Province 116034, China
| | - Pengfei Jiang
- College
of Materials Science and Engineering, Heilongjiang Provinces Key Laboratory
of Polymeric Composite materials, Qiqihar
University, Wenhua Street, Qiqihar 161006, China
| | - Xintian Wang
- College
of Materials Science and Engineering, Heilongjiang Provinces Key Laboratory
of Polymeric Composite materials, Qiqihar
University, Wenhua Street, Qiqihar 161006, China
| | - Wenwen Zhao
- College
of Materials Science and Engineering, Heilongjiang Provinces Key Laboratory
of Polymeric Composite materials, Qiqihar
University, Wenhua Street, Qiqihar 161006, China
| |
Collapse
|
24
|
Dashtimoghadam E, Fahimipour F, Keith AN, Vashahi F, Popryadukhin P, Vatankhah-Varnosfaderani M, Sheiko SS. Injectable non-leaching tissue-mimetic bottlebrush elastomers as an advanced platform for reconstructive surgery. Nat Commun 2021; 12:3961. [PMID: 34172721 PMCID: PMC8233362 DOI: 10.1038/s41467-021-23962-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
Current materials used in biomedical devices do not match tissue's mechanical properties and leach various chemicals into the body. These deficiencies pose significant health risks that are further exacerbated by invasive implantation procedures. Herein, we leverage the brush-like polymer architecture to design and administer minimally invasive injectable elastomers that cure in vivo into leachable-free implants with mechanical properties matching the surrounding tissue. This strategy allows tuning curing time from minutes to hours, which empowers a broad range of biomedical applications from rapid wound sealing to time-intensive reconstructive surgery. These injectable elastomers support in vitro cell proliferation, while also demonstrating in vivo implant integrity with a mild inflammatory response and minimal fibrotic encapsulation.
Collapse
Affiliation(s)
- Erfan Dashtimoghadam
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Farahnaz Fahimipour
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Division of Comprehensive Oral Health, Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew N Keith
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Foad Vashahi
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Pavel Popryadukhin
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
| | | | - Sergei S Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| |
Collapse
|
25
|
Choi C, Self JL, Okayama Y, Levi AE, Gerst M, Speros JC, Hawker CJ, Read de Alaniz J, Bates CM. Light-Mediated Synthesis and Reprocessing of Dynamic Bottlebrush Elastomers under Ambient Conditions. J Am Chem Soc 2021; 143:9866-9871. [PMID: 34170665 DOI: 10.1021/jacs.1c03686] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We introduce a novel grafting-through polymerization strategy to synthesize dynamic bottlebrush polymers and elastomers in one step using light to construct a disulfide-containing backbone. The key starting material-α-lipoic acid (LA)-is commercially available, inexpensive, and biocompatible. When installed on the chain end(s) of poly(dimethylsiloxane) (PDMS), the cyclic disulfide unit derived from LA polymerizes under ultraviolet (UV) light in ambient conditions. Significantly, no additives such as initiator, solvent, or catalyst are required for efficient gelation. Formulations that include bis-LA-functionalized cross-linker yield bottlebrush elastomers with high gel fractions (83-98%) and tunable, supersoft shear moduli in the ∼20-200 kPa range. An added advantage of these materials is the dynamic disulfide bonds along each bottlebrush backbone, which allow for light-mediated self-healing and on-demand chemical degradation. These results highlight the potential of simple and scalable synthetic routes to generate unique bottlebrush polymers and elastomers based on PDMS.
Collapse
Affiliation(s)
| | | | | | | | - Matthias Gerst
- BASF SE, Polymers for Adhesives, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Joshua C Speros
- BASF Corporation California Research Alliance, Berkeley, California 94720, United States
| | | | | | | |
Collapse
|
26
|
Xie R, Mukherjee S, Levi AE, Self JL, Wang H, Chabinyc ML, Bates CM. Yielding Behavior of Bottlebrush and Linear Block Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Renxuan Xie
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
| | - Sanjoy Mukherjee
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
| | - Adam E. Levi
- Department of Chemistry & Biochemistry , University of California, Santa Barbara, California 93106, United States
| | - Jeffrey L. Self
- Department of Chemistry & Biochemistry , University of California, Santa Barbara, California 93106, United States
| | - Hengbin Wang
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
| | - Michael L. Chabinyc
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
- Materials Department , University of California, Santa Barbara, California 93106, United States
| | - Christopher M. Bates
- Department of Chemistry & Biochemistry , University of California, Santa Barbara, California 93106, United States
- Materials Department , University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory , University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
27
|
|
28
|
Pan T, Patel BB, Walsh DJ, Dutta S, Guironnet D, Diao Y, Sing CE. Implicit Side-Chain Model and Experimental Characterization of Bottlebrush Block Copolymer Solution Assembly. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tianyuan Pan
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Bijal B. Patel
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Dylan J. Walsh
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sarit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Charles E. Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
29
|
|
30
|
Nakagawa S, Yoshie N. Synthesis of a Bottlebrush Polymer Gel with a Uniform and Controlled Network Structure. ACS Macro Lett 2021; 10:186-191. [PMID: 35570783 DOI: 10.1021/acsmacrolett.0c00791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A structurally controlled polymer gel was synthesized by end-linking a monodisperse star polymer in which each arm was a bottlebrush (BB) polymer densely grafted with side chains. The combination of atom transfer radical polymerization and postpolymerization modification yielded a four-arm star-shaped BB polymer with a controlled polymerization degree of the backbone and side chains. The reactive end groups introduced at the end of each arm reacted with small bifunctional linkers in solution, leading to the formation of a BB polymer gel. The elasticity study on the BB polymer gel suggested its uniform network structure. Our method enables precise and uniform tuning of essential structural parameters across the entire BB polymer network, which will be beneficial for developing soft materials with desired mechanical responses.
Collapse
Affiliation(s)
- Shintaro Nakagawa
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
| | - Naoko Yoshie
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
31
|
Pal D, Miao Z, Garrison JB, Veige AS, Sumerlin BS. Ultra-High-Molecular-Weight Macrocyclic Bottlebrushes via Post-Polymerization Modification of a Cyclic Polymer. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01797] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Digvijayee Pal
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Zhihui Miao
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
- Center for Catalysis, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - John B. Garrison
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Adam S. Veige
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
- Center for Catalysis, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
32
|
Xie R, Mukherjee S, Levi AE, Reynolds VG, Wang H, Chabinyc ML, Bates CM. Room temperature 3D printing of super-soft and solvent-free elastomers. SCIENCE ADVANCES 2020; 6:eabc6900. [PMID: 33188029 PMCID: PMC7673745 DOI: 10.1126/sciadv.abc6900] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/23/2020] [Indexed: 05/02/2023]
Abstract
Super-soft elastomers derived from bottlebrush polymers show promise as advanced materials for biomimetic tissue and device applications, but current processing strategies are restricted to simple molding. Here, we introduce a design concept that enables the three-dimensional (3D) printing of super-soft and solvent-free bottlebrush elastomers at room temperature. The key advance is a class of inks comprising statistical bottlebrush polymers that self-assemble into well-ordered body-centered cubic sphere phases. These soft solids undergo sharp and reversible yielding at 20°C in response to shear with a yield stress that can be tuned by manipulating the length scale of microphase separation. The addition of a soluble photocrosslinker allows complete ultraviolet curing after extrusion to form super-soft elastomers with near-perfect recoverable elasticity well beyond the yield strain. These structure-property design rules create exciting opportunities to tailor the performance of 3D-printed elastomers in ways that are not possible with current materials and processes.
Collapse
Affiliation(s)
- Renxuan Xie
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, CA 93106, USA
| | - Sanjoy Mukherjee
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, CA 93106, USA
| | - Adam E Levi
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Veronica G Reynolds
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, CA 93106, USA
- Materials Department, University of California, Santa Barbara, CA 93106, USA
| | - Hengbin Wang
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, CA 93106, USA
| | - Michael L Chabinyc
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, CA 93106, USA.
- Materials Department, University of California, Santa Barbara, CA 93106, USA
| | - Christopher M Bates
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA.
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
- Materials Department, University of California, Santa Barbara, CA 93106, USA
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
33
|
Martinez MR, Cong Y, Sheiko SS, Matyjaszewski K. A Thermodynamic Roadmap for the Grafting-through Polymerization of PDMS 11MA. ACS Macro Lett 2020; 9:1303-1309. [PMID: 35638616 DOI: 10.1021/acsmacrolett.0c00350] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Grafting-through atom transfer radical polymerization (ATRP) was used to polymerize a sterically hindered poly(dimethylsiloxane) methacrylate (PDMS11MA, Mn = 1000) macromonomer to high conversion as a function of temperature, solvent, initial monomer concentration, and pressure. Higher polymerization yields were obtained when polymerizations were conducted at (i) lower temperature (T), (ii) in a poor solvent for the side chain, (iii) higher initial monomer concentration ([M]0), and (iv) higher pressure by mitigating the contribution of the equilibrium monomer concentration ([M]eq). The enthalpy of polymerization (ΔHp) and entropy of polymerization (ΔSp) were more negative in poor solvents. Polymerizations at ambient pressure required higher [M]0, use of a poor solvent, and lower temperatures to reach higher conversion with good control, whereas high pressure ATRP (HP-ATRP) displayed better control under dilute conditions. Grafting-through polymerization at high P and higher [M]0 was less controlled, plausibly due to limited solubility and mobility of the copper catalyst in the highly viscous medium.
Collapse
Affiliation(s)
- Michael R Martinez
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yidan Cong
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Sergei S Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
34
|
Mei H, Mah AH, Hu Z, Li Y, Terlier T, Stein GE, Verduzco R. Rapid Processing of Bottlebrush Coatings through UV-Induced Cross-Linking. ACS Macro Lett 2020; 9:1135-1142. [PMID: 35653204 DOI: 10.1021/acsmacrolett.0c00384] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bottlebrush polymers can be used to introduce novel surface properties including hydrophilicity, stimuli-responsiveness, and reduced friction forces. However, simple, general, and efficient approaches to cross-linking bottlebrush polymer films and coatings are limited. Here, we report that bottlebrush polymers with an unsaturated polynorbornene backbone and thiol-terminated side chains can be cross-linked on demand by UV irradiation to produce uniform and insoluble bottlebrush polymer coatings. To quantify the kinetics and efficiency of cross-linking by UV exposure (254 nm), we measured the normalized residual thickness (NRT) of bottlebrush and linear polymer films after UV exposure and solvent washing. For bottlebrush polymers with thiol-terminated polystyrene (PS) side chains, the NRT exceeded 60% for a UV dose of 1.0 J/cm2, while unfunctionalized linear PS required a dose of 7.9 J/cm2 to achieve similar NRT values. Rapid UV-induced cross-linking of the bottlebrush PS was attributed to the thiol-ene coupling of the thiol-terminated side chains with the unsaturated polynorbornene backbones, as demonstrated through FTIR measurements and control studies involving bottlebrush polymers with saturated backbones. To establish the broader applicability of this approach, UV-induced cross-linking was demonstrated for thin films of bottlebrush polymers with thiol-terminated poly(methyl acrylate) (BB-PMMA-SH) side chains and those with poly(ethylene glycol) (BB-PEG) and poly(lactic acid) (BB-PLA) side chains which do not contain thiol end groups. UV-induced cross-linking of BB-PEG and BB-PLA films required the use of a multifunctional thiol additive. Finally, we demonstrated that bottlebrush polymer multilayers can be fabricated through sequential deposition and UV-induced cross-linking of different bottlebrush polymer chemistries. The cross-linking process outlined in this work is simple, general, and efficient and produces solvent-resistant coatings that preserve the unique properties and functions of bottlebrush polymers.
Collapse
Affiliation(s)
- Hao Mei
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, Houston, Texas 77005, United States
| | - Adeline Huizhen Mah
- Department of Materials Science and Engineering, University of Houston, Houston, Texas 77004, United States
| | - Zhiqi Hu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Yilin Li
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Tanguy Terlier
- SIMS Lab, Shared Equipment Authority, Rice University, Houston, Texas 77005, United States
| | - Gila E. Stein
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
35
|
Self JL, Sample CS, Levi AE, Li K, Xie R, de Alaniz JR, Bates CM. Dynamic Bottlebrush Polymer Networks: Self-Healing in Super-Soft Materials. J Am Chem Soc 2020; 142:7567-7573. [PMID: 32227998 DOI: 10.1021/jacs.0c01467] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We introduce a design strategy to expand the range of accessible mechanical properties in covalent adaptable networks (CANs) using bottlebrush polymer building blocks. Well-defined bottlebrush polymers with rubbery poly(4-methylcaprolactone) side chains were cross-linked in formulations that include a bislactone and strong Lewis acid (tin ethylhexanoate). The resulting materials exhibit tunable stress-relaxation rates at elevated temperatures (160-180 °C) due to dynamic ester cross-links that undergo transesterification with residual hydroxy groups. Varying the cross-linker loading or bottlebrush backbone degree of polymerization yields predictable low-frequency shear moduli ca. 10-100 kPa, well below values typical of linear polymer CANs (1 MPa). These extensible networks can be stretched to strains as large as 350% before failure and undergo efficient self-healing to recover >85% of their original toughness upon repeated fracture and melt processing. In summary, molecular architecture creates new opportunities to tailor the mechanical properties of CANs in ways that are otherwise difficult to achieve.
Collapse
|