1
|
Lin X, Gu Q, Li J, Zhu J. Zinc-Mediated Living Cationic Polymerization. ACS Macro Lett 2023; 12:1692-1697. [PMID: 38038281 DOI: 10.1021/acsmacrolett.3c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Here, we present a facile and robust method for living cationic polymerization using zinc wire as a catalyst precursor. Well-defined poly(vinyl ether)s with various molecular weights and narrow molecular weight distributions (Đ < 1.10) can be achieved at room temperature. Excellent living characteristics were observed in kinetic and chain extension experiments. Mechanistic investigations revealed that the polymerization was catalyzed by the in situ generation of trace zinc ions, which is the key to polymerization under mild conditions. The utilization of zinc wire offers several advantages, including reusability, easy separation and low metal residue. Furthermore, we extended the application of this method in continuous flow polymerization, opening up a promising avenue for scalable and efficient industrial production under mild conditions.
Collapse
Affiliation(s)
- Xia Lin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qianxi Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Yang Z, Xiao W, Zhang X, Liao S. Organocatalytic cationic degenerate chain transfer polymerization of vinyl ethers with excellent temporal control. Polym Chem 2022. [DOI: 10.1039/d2py00134a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photo-controlled cationic degenerate chain transfer polymerization of vinyl ethers has been developed by using a bisphosphonium organophotocatalyst.
Collapse
Affiliation(s)
- Zan Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wenpei Xiao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xun Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Beijing National Laboratory for Molecular Science, Beijing 100190, China
| |
Collapse
|
3
|
Duan J, Gong Y, Chen D, Ma Y, Song C, Yang W. Radical Homopolymerization of Vinyl Ethers Activated by Li+-π Complexation in the Presence of CH3OLi and LiI. Polym Chem 2022. [DOI: 10.1039/d1py01619a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we develop a direct, thermally initiated radical homopolymerization of vinyl ethers mediated by lithium salts CH3OLi and LiI. In the case of vinyl ether monomers having a...
Collapse
|
4
|
Li J, Kerr A, Song Q, Yang J, Häkkinen S, Pan X, Zhang Z, Zhu J, Perrier S. Manganese-Catalyzed Batch and Continuous Flow Cationic RAFT Polymerization Induced by Visible Light. ACS Macro Lett 2021; 10:570-575. [PMID: 35570764 DOI: 10.1021/acsmacrolett.1c00180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We present a robust manganese-catalyzed cationic reversible addition-fragmentation chain transfer (RAFT) polymerization induced by visible light. Well-defined poly(vinyl ether)s with controlled molecular weight and molecular weight distributions (MWDs) can be conveniently prepared at room temperature without monomer purification. The commercially available manganese carbonyl bromide is used as the photocatalyst for cationic RAFT polymerization. Moreover, this method has been further applied in both batch and continuous flow systems, providing a visible light induced flow cationic polymerization under mild conditions.
Collapse
Affiliation(s)
- Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Andrew Kerr
- Department of Chemistry and Warwick Medical School, The University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Qiao Song
- Department of Chemistry and Warwick Medical School, The University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jie Yang
- Department of Chemistry and Warwick Medical School, The University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Satu Häkkinen
- Department of Chemistry and Warwick Medical School, The University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Sébastien Perrier
- Department of Chemistry and Warwick Medical School, The University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Medical School, The University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
5
|
Chen Y, Zhang L, Jin Y, Lin X, Chen M. Recent Advances in Living Cationic Polymerization with Emerging Initiation/Controlling Systems. Macromol Rapid Commun 2021; 42:e2100148. [PMID: 33969566 DOI: 10.1002/marc.202100148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/06/2021] [Indexed: 12/27/2022]
Abstract
While the conventional living cationic polymerization (LCP) provided opportunities to synthesizing well-defined polymers with predetermined molecular weights, desirable chemical structures and narrow dispersity, it is still important to continuously innovate new synthetic methods to meet the increasing requirements in advanced material engineering. Consequently, a variety of novel initiation/controlling systems have be demonstrated recently, which have enabled LCP with spatiotemporal control, broadened scopes of monomers and terminals, more user-friendly operations and reaction conditions, as well as improved thermomechanical properties for obtained polymers. In this work, recent advances in LCP is summarized with emerging initiation/controlling systems, including chemical-initiated/controlled cationic reversible addition-fragmentation chain transfer (RAFT) polymerization, photoinitiated/controlled LCP, electrochemical-controlled LCP, thionyl/selenium halide-initiated LCP, organic acid-assisted LCP, and stereoselective LCP. It is hoped that this summary will provide useful knowledge to people in related fields and stimulate new ideas to promote the development and application of LCP in both academia and industry.
Collapse
Affiliation(s)
- Yinan Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Lu Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xinrong Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
6
|
Lin X, Li J, Zhang J, Liu S, Lin X, Pan X, Zhu J, Zhu X. Living cationic polymerization of vinyl ethers initiated by electrophilic selenium reagents under ambient conditions. Polym Chem 2021. [DOI: 10.1039/d0py01691h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present a living cationic polymerization of vinyl ethers utilizing electrophilic selenium reagents as initiators and pentacarbonylbromomanganese (Mn(CO)5Br) as the catalyst.
Collapse
Affiliation(s)
- Xia Lin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jiajia Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jiandong Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Shaoxiang Liu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiaofang Lin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiangqiang Pan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
7
|
Peterson GI, Choi TL. Cascade polymerizations: recent developments in the formation of polymer repeat units by cascade reactions. Chem Sci 2020; 11:4843-4854. [PMID: 34122940 PMCID: PMC8159232 DOI: 10.1039/d0sc01475c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/17/2020] [Indexed: 01/09/2023] Open
Abstract
Traditionally, most polymerizations rely on simple reactions such as alkene addition, ring-opening, and condensation because they are robust, highly efficient, and selective. These reactions, however, generally only yield a single new C-C or C-O bond during each propagation step. In recent years, novel macromolecules have been prepared with propagation steps that involve cascade reactions, enabling various combinations of bond making and breaking steps to form more complex repeat units. These polymerizations are often challenging, given the requirements for high conversion and selectivity in controlled polymerizations, yet they provide polymers with unique chemical structures and significantly broaden the scope of how polymers can be made. In this perspective, we summarize the recent developments in cascade polymerizations, primarily focusing on single-component cascades (rather than multi-component polymerizations). Polymerization performance, monomer scope, and mechanisms are discussed for polymerizations utilizing radical, ionic, and metathesis-based mechanisms.
Collapse
Affiliation(s)
- Gregory I Peterson
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|