1
|
Toth SH, Stoica AD, Sevcencu C. Redesigning Ibuprofen for Improved Oral Delivery and Reduced Side Effects. Bioconjug Chem 2025; 36:893-913. [PMID: 40292773 DOI: 10.1021/acs.bioconjchem.4c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Ibuprofen (IBP) is one of the most widely used nonsteroidal anti-inflammatory drugs (NSAIDs). Being well-known for its efficacy, long history of use, and reduced adverse events compared to other NSAIDs, IBP is authorized as an analgesic and antipyretic drug. IBP's mechanism of action consists of inhibiting cyclooxygenases, which are crucial oxidoreductases in prostaglandin synthesis and generation of inflammation and pain. However, despite being effective and relatively safe, IBP can still induce a dose-dependent toxicity which manifests mainly in the gastrointestinal system as ulcerations and altered mucosal blood flow and cytotoxicity characterized by mitochondrial dysfunction and increased membrane permeability in enterocytes and hepatocytes. Therefore, ongoing research is performed to improve the IBP's activity and treatment outcome, and one way to achieve such improvements is through reducing IBP's toxicity by designing less harmful but still effective novel IBP conjugates. The aim of this review is to summarize the latest achievements with IBP conjugation techniques that created such valuable IBP formulations less toxic than but as effective as the parent drug.
Collapse
Affiliation(s)
- Szilvia H Toth
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, 400006, Romania
- Doctoral School of Integrative Biology, Babes-Bolyai University, Cluj-Napoca, 40006, Romania
| | - Anca D Stoica
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, 400006, Romania
| | - Cristian Sevcencu
- National Institute of Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, 400293, Romania
- Doctoral School of Integrative Biology, Babes-Bolyai University, Cluj-Napoca, 40006, Romania
| |
Collapse
|
2
|
Strasser P, Walliser C, Ajvazi E, Bauer F, Brüggemann O, Lämmermann S, Major Z, Minarčíková A, Majerčíková M, Mičušík M, Kleinová A, Kroneková Z, Kronek J, Teasdale I. Metal-Free Curing of 3D Printable Silicone Elastomers via Thermally Triggered 2-Oxazoline Cross-Linkers. Macromolecules 2025; 58:2709-2718. [PMID: 40104269 PMCID: PMC11912537 DOI: 10.1021/acs.macromol.4c03121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 03/20/2025]
Abstract
Silicone elastomers are commonly cured by hydrosilylation or condensation reactions, both of which require metal-based catalysts. Due to environmental, toxicological, and cost concerns, there is considerable interest in developing metal-free alternatives. Herein, we present a novel solution via an atom-efficient, catalyst-free ring-opening of poly(2-isopropenyl-2-oxazoline) (PiPOx) as a curing agent. PiPOx are macromolecules bearing pendant reactive 2-oxazoline groups capable of undergoing a ring-opening reaction in the presence of carboxylic acids to give covalent amide-ester bonds. Polydimethylsiloxane (PDMS) chains with COOH moieties at the chain ends could be effectively cured with PiPOx as a latent curing agent. The reaction does not proceed at room temperature but cures in less than 5 min at elevated temperatures (>80 °C) in the absence of catalysts or solvents and without the evolution of volatiles. The PDMS diacids are easily accessible via a simple thiolene addition to divinyl siloxanes in a single step, thus extending the utility of this approach to all divinyl siloxanes, which are widely commercially available in a broad range of chain lengths. The cured elastomers contain up to 98 wt % of the PDMS constituent (including the end-groups), hence mirroring the chemical structure of traditional metal-cured commercial PDMS elastomers. Solvent-free, thermally triggered curing in a practical temperature range facilitates processing using standard extrusion-based processing and additive manufacturing techniques.
Collapse
Affiliation(s)
- Paul Strasser
- Institute
of Polymer Chemistry, Johannes Kepler University
Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Christina Walliser
- Institute
of Polymer Chemistry, Johannes Kepler University
Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Edip Ajvazi
- Institute
of Polymer Chemistry, Johannes Kepler University
Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Felix Bauer
- Institute
of Polymer Chemistry, Johannes Kepler University
Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Oliver Brüggemann
- Institute
of Polymer Chemistry, Johannes Kepler University
Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Sebastian Lämmermann
- Institute
of Polymer Product Engineering, Johannes
Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Zoltan Major
- Institute
of Polymer Product Engineering, Johannes
Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Alžbeta Minarčíková
- Department
for Biomaterials Research, Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Monika Majerčíková
- Department
for Biomaterials Research, Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Matej Mičušík
- Department
for Biomaterials Research, Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Angela Kleinová
- Department
for Biomaterials Research, Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Zuzana Kroneková
- Department
for Biomaterials Research, Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Juraj Kronek
- Department
for Biomaterials Research, Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Ian Teasdale
- Institute
of Polymer Chemistry, Johannes Kepler University
Linz, Altenberger Straße 69, 4040 Linz, Austria
| |
Collapse
|
3
|
Kronek J, Minarčíková A, Kroneková Z, Majerčíková M, Strasser P, Teasdale I. Poly(2-isopropenyl-2-oxazoline) as a Versatile Functional Polymer for Biomedical Applications. Polymers (Basel) 2024; 16:1708. [PMID: 38932057 PMCID: PMC11207257 DOI: 10.3390/polym16121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Functional polymers play an important role in various biomedical applications. From many choices, poly(2-isopropenyl-2-oxazoline) (PIPOx) represents a promising reactive polymer with great potential in various biomedical applications. PIPOx, with pendant reactive 2-oxazoline groups, can be readily prepared in a controllable manner via several controlled/living polymerization methods, such as living anionic polymerization, atom transfer radical polymerization (ATRP), reversible addition-fragmentation transfer (RAFT) or rare earth metal-mediated group transfer polymerization. The reactivity of pendant 2-oxazoline allows selective reactions with thiol and carboxylic group-containing compounds without the presence of any catalyst. Moreover, PIPOx has been demonstrated to be a non-cytotoxic polymer with immunomodulative properties. Post-polymerization functionalization of PIPOx has been used for the preparation of thermosensitive or cationic polymers, drug conjugates, hydrogels, brush-like materials, and polymer coatings available for drug and gene delivery, tissue engineering, blood-like materials, antimicrobial materials, and many others. This mini-review covers new achievements in PIPOx synthesis, reactivity, and use in biomedical applications.
Collapse
Affiliation(s)
- Juraj Kronek
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (A.M.); (Z.K.); (M.M.)
| | - Alžbeta Minarčíková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (A.M.); (Z.K.); (M.M.)
| | - Zuzana Kroneková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (A.M.); (Z.K.); (M.M.)
| | - Monika Majerčíková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (A.M.); (Z.K.); (M.M.)
| | - Paul Strasser
- Institute of Polymer Chemistry, Johannes Kepler University, Altenbergerstrasse 69, 4040 Linz, Austria; (P.S.); (I.T.)
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University, Altenbergerstrasse 69, 4040 Linz, Austria; (P.S.); (I.T.)
| |
Collapse
|
4
|
Kroneková Z, Majerčíková M, Paulovičová E, Minarčíková A, Danko M, Markus J, Letasiova S, Kronek J. Cytotoxicity and Bioimmunological Activity of Poly(2-Isopropenyl-2-oxazoline) Conjugates with Ibuprofen Using 3D Reconstructed Tissue Models. Biomacromolecules 2024; 25:3288-3301. [PMID: 38805352 DOI: 10.1021/acs.biomac.3c01434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Poly(2-isopropenyl-2-oxazoline) (PIPOx) represents a universal polymer platform with pendant 2-oxazoline groups, allowing the preparation of biomaterials for various biomedical applications. However, there is a lack of information on PIPOx concerning the effect of molar mass (Mn) on cytotoxicity and bioimmunological properties. Here, aqueous copper(0)-mediated reversible-deactivation radical polymerization (Cu0-RDPR) was used for the preparation of PIPOx with defined Mn and low dispersity. PIPOx of different Mn are used for the synthesis of conjugates with ibuprofen (5 mol %), the nonsteroidal anti-inflammatory drug. The release of ibuprofen at 37 °C and different pH values is monitored using high-performance liquid chromatography, where the rate of drug release increases with increasing pH and lower Mn. In vitro cytotoxicity and bioimmunological properties of PIPOx and drug conjugates are studied using 3D reconstructed tissue models of the human epidermis and intestinal epithelium. We demonstrate low cytotoxicity of PIPOx and conjugates with different Mn values on both 3D tissue models.
Collapse
Affiliation(s)
- Zuzana Kroneková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Monika Majerčíková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Ema Paulovičová
- Department of Glycomaterials, Immunology & Cell Culture Laboratories, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia
| | - Alžbeta Minarčíková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Monika Danko
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Jan Markus
- MatTek In Vitro Life Science Laboratories, Mlynske Nivy 73, 821 05 Bratislava, Slovakia
| | - Silvia Letasiova
- MatTek In Vitro Life Science Laboratories, Mlynske Nivy 73, 821 05 Bratislava, Slovakia
| | - Juraj Kronek
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| |
Collapse
|
5
|
Kopka B, Kost B, Pawlak A, Tomaszewska A, Krupa A, Basko M. Covalent segmented polymer networks composed of poly(2-isopropenyl-2-oxazoline) and selected aliphatic polyesters: designing biocompatible amphiphilic materials containing degradable blocks. SOFT MATTER 2023; 19:6987-6999. [PMID: 37667566 DOI: 10.1039/d3sm00948c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
To promote facile and efficient synthesis of segmented covalent networks, we developed a cross-linking process with reactive polymeric components in a system without catalysts or side products. To achieve the direct formation of amphiphilic networks, an addition reaction was performed between the polyesters containing carboxyl terminal groups with pendant groups distributed along poly(2-isopropenyl-2-oxazoline) chains. Covalent cross-linking was achieved from predetermined amounts of components dissolved in DMSO at 140 °C. To tune the properties of the resulting networks, the composition and length of the polyester segments and the degree of cross-linking were changed in the feed. The chemical structure of the networks was characterized using Fourier transform infrared-attenuated total reflection spectroscopy and 13C magic-angle spinning NMR. The swelling ability of the formed networks was investigated in aqueous and organic media. Moreover, mechanical properties were tested during uniaxial compression. The cytocompatibility of the scaffolds was confirmed by MTT assay. Through the results obtained, the first report describing the cross-linking of polyesters on hydrophilic PiPOx was provided to prepare new, biocompatible materials with tuneable properties that are promising for potential biomedical applications.
Collapse
Affiliation(s)
- Bartosz Kopka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Bartłomiej Kost
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Andrzej Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Agata Tomaszewska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
- Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Banacha 12/16, 90-237 Lodz, Poland
| | - Agnieszka Krupa
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Malgorzata Basko
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| |
Collapse
|
6
|
Janata M, Čadová E, Johnson JW, Raus V. Diminishing the catalyst concentration in the Cu(0)‐
RDRP
and
ATRP
synthesis of well‐defined low‐molecular weight poly(glycidyl methacrylate). JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20230087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Miroslav Janata
- Institute of Macromolecular Chemistry Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| | - Eva Čadová
- Institute of Macromolecular Chemistry Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| | - Jeffery W. Johnson
- Axalta Coating Systems Global Innovation Center Philadelphia PA 19112 USA
| | - Vladimír Raus
- Institute of Macromolecular Chemistry Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| |
Collapse
|
7
|
|
8
|
Kopka B, Kost B, Basko M. Poly(2-isopropenyl-2-oxazoline) as a reactive polymer for materials development. Polym Chem 2022. [DOI: 10.1039/d2py00660j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poly(2-isopropenyl-2-oxazoline) has attracted growing interest as a reactive polymer that can be used as a starting material for the construction of more complex structures.
Collapse
Affiliation(s)
- Bartosz Kopka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Bartłomiej Kost
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Malgorzata Basko
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
9
|
Ma H, Ha S, Jeong J, Wang V, Kim KT. Synthesis of discrete bottlebrush polymers via the iterative convergent growth technique and post-functionalization. Polym Chem 2022. [DOI: 10.1039/d2py00573e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of discrete bottlebrush polymers (Step 1: Iterative convergent growth. Step 2: Post-functionalization using thiol–ene click chemistry.)
Collapse
Affiliation(s)
- Hyunji Ma
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sungmin Ha
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jisu Jeong
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Valene Wang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Kyoung Taek Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
10
|
Jerca FA, Jerca VV, Hoogenboom R. In Vitro Assessment of the Hydrolytic Stability of Poly(2-isopropenyl-2-oxazoline). Biomacromolecules 2021; 22:5020-5032. [PMID: 34753285 DOI: 10.1021/acs.biomac.1c00994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Poly(2-isopropenyl-2-oxazoline) (PiPOx) is emerging as a promising, versatile polymer platform to design functional materials and particularly biomaterials that rely on the hydrophilic character of the 2-oxazoline side units. To be able to assess the applicability of PiPOx in a biomedical context, it is essential to understand its stability and degradation behavior in physiological conditions. In the present work, the hydrolytic stability of PiPOx was systematically investigated as a function of pH during incubation in various buffers. PiPOx was found to be stable in deionized water (pH 6.9), to have good stability in basic conditions (pH 8 and 9), to be satisfactorily stable in neutral conditions (pH 7.4), and to have moderate to low stability in acidic conditions (decreases drastically from pH 6 to pH 1.2). At pH 4, PiPOx formed a crosslinked network in a timeframe of hours, while at pH 1.2, PiPOx was transformed to a water-soluble poly(N-(2-hydroxyethyl)methacrylamide) type of structure over the course of 2 weeks. In vitro stability assays were performed in phosphate-buffered saline (pH 7.4), simulated body fluid (SBF) (pH 7.4), simulated saliva (pH 6.4), simulated intestinal fluid (pH 6.8), and plasma (pH 7.4) revealing that PiPOx is stable in these SBFs up to 1 week of incubation. When incubated in simulated gastric fluid (pH 1.2), PiPOx exhibited a similar degradation behavior to that observed in the buffer at pH 1.2, rendering a water-soluble structure. The presented results on the stability of PiPOx will be important for future use of PiPOx for the development of drug-delivery systems and biomedical applications, such as hydrogels.
Collapse
Affiliation(s)
- Florica Adriana Jerca
- Centre of Organic Chemistry "Costin D. Nenitzescu", Romanian Academy, 202B Spl. Independentei CP 35-108, 060023 Bucharest, Romania
| | - Valentin Victor Jerca
- Centre of Organic Chemistry "Costin D. Nenitzescu", Romanian Academy, 202B Spl. Independentei CP 35-108, 060023 Bucharest, Romania
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| |
Collapse
|
11
|
Liu W, Yang Q, Yang Y, Xing F, Xiao P. PhotoATRP Approach to Poly(methyl methacrylate) with Aggregation-Induced Emission. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenli Liu
- Department of Immunobiology, College of Life Science and Technology, Jinan University 601 Huangpu West Avenue, Guangzhou 510632, China
| | - Qizhi Yang
- Department of Immunobiology, College of Life Science and Technology, Jinan University 601 Huangpu West Avenue, Guangzhou 510632, China
| | - Yili Yang
- Department of Immunobiology, College of Life Science and Technology, Jinan University 601 Huangpu West Avenue, Guangzhou 510632, China
| | - Feiyue Xing
- Department of Immunobiology, College of Life Science and Technology, Jinan University 601 Huangpu West Avenue, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Pu Xiao
- Research School of Chemistry, The Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
12
|
|
13
|
Paulovičová E, Kroneková Z, Paulovičová L, Majerčíková M, Kronek J. Cell-Mediated Immunoreactivity of Poly(2-isopropenyl-2-oxazoline) as Promising Formulation for Immunomodulation. MATERIALS 2021; 14:ma14061371. [PMID: 33809040 PMCID: PMC7999147 DOI: 10.3390/ma14061371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/16/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022]
Abstract
Poly(2-isopropenyl-2-oxazoline) (PIPOx) represents a functional polymer with high potential for drug delivery, tissue engineering, and immunomodulation. The immunomodulatory efficiency of the PIPOx formulation has been studied in vitro following splenic cells and RAW 264.7 macrophages exposition. The cell-specific immunomodulative effect on production of Th1, Th2, Th17, and Treg signature cytokines has been demonstrated. The impact on the functionality of PIPOx-sensitized RAW 264.7 macrophages was assessed by cell phagocytosis. Time- and concentration-dependent cell internalization and intracellular organelles colocalization of fluorescently labeled PIPOx has been examined. The in vitro results demonstrated the PIPOx bioavailability and the capability of triggering immune cell responses resulting in the induced production of cell-specific signature interleukins, important prerequisite properties for future potential biomedical applications.
Collapse
Affiliation(s)
- Ema Paulovičová
- Immunol & Cell Culture Laboratories, Department Immunochemistry of Glycoconjugates, Center of Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia; (E.P.); (L.P.)
| | - Zuzana Kroneková
- Department for Biomaterials Research, Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (Z.K.); (M.M.)
| | - Lucia Paulovičová
- Immunol & Cell Culture Laboratories, Department Immunochemistry of Glycoconjugates, Center of Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia; (E.P.); (L.P.)
| | - Monika Majerčíková
- Department for Biomaterials Research, Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (Z.K.); (M.M.)
| | - Juraj Kronek
- Department for Biomaterials Research, Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (Z.K.); (M.M.)
- Correspondence: ; Tel.: +421-2-3229-4366
| |
Collapse
|
14
|
Zahoranová A, Luxenhofer R. Poly(2-oxazoline)- and Poly(2-oxazine)-Based Self-Assemblies, Polyplexes, and Drug Nanoformulations-An Update. Adv Healthc Mater 2021; 10:e2001382. [PMID: 33448122 PMCID: PMC11468752 DOI: 10.1002/adhm.202001382] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/03/2020] [Indexed: 12/30/2022]
Abstract
For many decades, poly(2-oxazoline)s and poly(2-oxazine)s, two closely related families of polymers, have led the life of a rather obscure research topic with only a few research groups world-wide working with them. This has changed in the last five to ten years, presumably triggered significantly by very promising clinical trials of the first poly(2-oxazoline)-based drug conjugate. The huge chemical and structural toolbox poly(2-oxazoline)s and poly(2-oxazine)s has been extended very significantly in the last few years, but their potential still remains largely untapped. Here, specifically, the developments in macromolecular self-assemblies and non-covalent drug delivery systems such as polyplexes and drug nanoformulations based on poly(2-oxazoline)s and poly(2-oxazine)s are reviewed. This highly dynamic field benefits particularly from the extensive synthetic toolbox poly(2-oxazoline)s and poly(2-oxazine)s offer and also may have the largest potential for a further development. It is expected that the research dynamics will remain high in the next few years, particularly as more about the safety and therapeutic potential of poly(2-oxazoline)s and poly(2-oxazine)s is learned.
Collapse
Affiliation(s)
- Anna Zahoranová
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163MCVienna1060Austria
| | - Robert Luxenhofer
- Functional Polymer MaterialsChair for Advanced Materials SynthesisInstitute for Functional Materials and BiofabricationDepartment of Chemistry and PharmacyJulius‐Maximilians‐Universität WürzburgRöntgenring 11Würzburg97070Germany
- Soft Matter ChemistryDepartment of ChemistryHelsinki UniversityHelsinki00014Finland
| |
Collapse
|
15
|
Cegłowski M, Jerca VV, Jerca FA, Hoogenboom R. Reduction-Responsive Molecularly Imprinted Poly(2-isopropenyl-2-oxazoline) for Controlled Release of Anticancer Agents. Pharmaceutics 2020; 12:E506. [PMID: 32498326 PMCID: PMC7356239 DOI: 10.3390/pharmaceutics12060506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/09/2023] Open
Abstract
Trigger-responsive materials are capable of controlled drug release in the presence of a specific trigger. Reduction induced drug release is especially interesting as the reductive stress is higher inside cells than in the bloodstream, providing a conceptual controlled release mechanism after cellular uptake. In this work, we report the synthesis of 5-fluorouracil (5-FU) molecularly imprinted polymers (MIPs) based on poly(2-isopropenyl-2-oxazoline) (PiPOx) using 3,3'-dithiodipropionic acid (DTDPA) as a reduction-responsive functional cross-linker. The disulfide bond of DTDPA can be cleaved by the addition of tris(2-carboxyethyl)phosphine (TCEP), leading to a reduction-induced 5-FU release. Adsorption isotherms and kinetics for 5-FU indicate that the adsorption kinetics process for imprinted and non-imprinted adsorbents follows two different kinetic models, thus suggesting that different mechanisms are responsible for adsorption. The release kinetics revealed that the addition of TCEP significantly influenced the release of 5-FU from PiPOx-MIP, whereas for non-imprinted PiPOx, no statistically relevant differences were observed. This work provides a conceptual basis for reduction-induced 5-FU release from molecularly imprinted PiPOx, which in future work may be further developed into MIP nanoparticles for the controlled release of therapeutic agents.
Collapse
Affiliation(s)
- Michał Cegłowski
- Supramolecular Chemistry Group, Center of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium; (V.V.J.); (F.A.J.)
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Valentin Victor Jerca
- Supramolecular Chemistry Group, Center of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium; (V.V.J.); (F.A.J.)
- Centre of Organic Chemistry “Costin D. Nenitzescu”, Romanian Academy, Spl. Independentei 202B, 060023 Bucharest, Romania
| | - Florica Adriana Jerca
- Supramolecular Chemistry Group, Center of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium; (V.V.J.); (F.A.J.)
- Centre of Organic Chemistry “Costin D. Nenitzescu”, Romanian Academy, Spl. Independentei 202B, 060023 Bucharest, Romania
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Center of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium; (V.V.J.); (F.A.J.)
| |
Collapse
|
16
|
Leiske MN, Mahmoud AM, Warne NM, Goos JACM, Pascual S, Montembault V, Fontaine L, Davis TP, Whittaker MR, Kempe K. Poly(2-isopropenyl-2-oxazoline) – a structural analogue to poly(vinyl azlactone) with Orthogonal Reactivity. Polym Chem 2020. [DOI: 10.1039/d0py00861c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modular copolymer platform based on two oxazole derivatives is presented. Post-polymerisation modifications revealed the potential to selectively modify the individual side groups, providing access to functional copolymer libraries in the future.
Collapse
|