1
|
Zhong Z, Du G, Ma L, Wang Y, Jiang J. Self-Assembly of Lamellae-in-Lamellae by Double-Tail Cationic Surfactants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401210. [PMID: 38751126 PMCID: PMC11267300 DOI: 10.1002/advs.202401210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Indexed: 07/25/2024]
Abstract
The molecular structures of surfactants play a pivotal role in influencing their self-assembly behaviors. In this work, using simulations and experiments, an unconventional hierarchically layered structure in the didodecyldimethylammonium bromide (DDAB)/water binary system: lamellae-in-lamellae is revealed, a new self-assembly structure in surfactant system. This self-assembly structure refers to a lamellar structure with a shorter periodic length (inner lamellae) embedded in a lamellar phase with a longer periodic length (outer lamellae). The normal vectors of these two lamellar regions orient perpendicularly. In addition, it is observed that this lamellar-in-lamellar phase disappears when the two tails of the cationic surfactants become longer. The formation of the lamellar-in-lamellar architecture arises from multiple interacting factors. The key element is that the short tails of the DDAB surfactants enhance hydrophilicity and rigidity, which facilitates the formation of the inner lamellae. Moreover, the lateral monolayer of the inner lamellae provides shielding from the water and prompts the formation of the outer lamellae. These findings indicate that molecular structures and flexibility can profoundly redirect the hierarchical self-assembly behaviors in amphiphilic systems. More broadly, this work presents a new strategy to deliberately program hierarchical nanomaterials by designing specific surfactant molecules to act as tunable scaffolds, reactors, and carriers.
Collapse
Affiliation(s)
- Zhixuan Zhong
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Guanqun Du
- CAS Key Laboratory of ColloidInterface and Chemical ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesBeijing National Laboratory for Molecular ScienceInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Linbo Ma
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yilin Wang
- University of Chinese Academy of SciencesBeijing100049P. R. China
- CAS Key Laboratory of ColloidInterface and Chemical ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesBeijing National Laboratory for Molecular ScienceInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Jian Jiang
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
2
|
Malashin I, Daibagya D, Tynchenko V, Gantimurov A, Nelyub V, Borodulin A. Predicting Diffusion Coefficients in Nafion Membranes during the Soaking Process Using a Machine Learning Approach. Polymers (Basel) 2024; 16:1204. [PMID: 38732673 PMCID: PMC11085799 DOI: 10.3390/polym16091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Nafion, a versatile polymer used in electrochemistry and membrane technologies, exhibits complex behaviors in saline environments. This study explores Nafion membrane's IR spectra during soaking and subsequent drying processes in salt solutions at various concentrations. Utilizing the principles of Fick's second law, diffusion coefficients for these processes are derived via exponential approximation. By harnessing machine learning (ML) techniques, including the optimization of neural network hyperparameters via a genetic algorithm (GA) and leveraging various regressors, we effectively pinpointed the optimal model for predicting diffusion coefficients. Notably, for the prediction of soaking coefficients, our model is composed of layers with 64, 64, 32, and 16 neurons, employing ReLU, ELU, sigmoid, and ELU activation functions, respectively. Conversely, for drying coefficients, our model features two hidden layers with 16 and 12 neurons, utilizing sigmoid and ELU activation functions, respectively.
Collapse
Affiliation(s)
- Ivan Malashin
- Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia (A.G.); (V.N.); (A.B.)
| | - Daniil Daibagya
- Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia (A.G.); (V.N.); (A.B.)
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vadim Tynchenko
- Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia (A.G.); (V.N.); (A.B.)
| | - Andrei Gantimurov
- Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia (A.G.); (V.N.); (A.B.)
| | - Vladimir Nelyub
- Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia (A.G.); (V.N.); (A.B.)
- Scientific Department, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Aleksei Borodulin
- Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia (A.G.); (V.N.); (A.B.)
| |
Collapse
|
3
|
Srivastav H, Weber AZ, Radke CJ. Colloidal Stability of PFSA-Ionomer Dispersions. Part I. Single-Ion Electrostatic Interaction Potential Energies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6654-6665. [PMID: 38457278 DOI: 10.1021/acs.langmuir.3c03903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Charged colloidal particles neutralized by a single counterion are increasingly important for many emerging technologies. Attention here is paid specifically to hydrogen fuel cells and water electrolyzers whose catalyst layers are manufactured from a perfluorinated sulfonic acid polymer (PFSA) suspended in aqueous/alcohol solutions. Partially dissolved PFSA aggregates, known collectively as ionomers, are stabilized by the electrostatic repulsion of overlapping diffuse double layers consisting of only protons dissociated from the suspended polymer. We denote such double layers containing no added electrolyte as "single ion". Size-distribution predictions build upon interparticle interaction potential energies from the Derjaguin-Landau-Verwey-Overbeek (DLVO) formalism. However, when only a single counterion is present in solution, classical DLVO electrostatic potential energies no longer apply. Accordingly, here a new formulation is proposed to describe how single-counterion diffuse double layers interact in colloidal suspensions. Part II (Srivastav, H.; Weber, A. Z.; Radke, C. J. Langmuir 2024 DOI: 10.1021/acs.langmuir.3c03904) of this contribution uses the new single-ion interaction energies to predict aggregated size distributions and the resulting solution pH of PFSA in mixtures of n-propanol and water. A single-counterion diffuse layer cannot reach an electrically neutral concentration far from a charged particle. Consequently, nowhere in the dispersion is the solvent neutral, and the diffuse layer emanating from one particle always experiences the presence of other particles (or walls). Thus, in addition to an intervening interparticle repulsive force, a backside osmotic force is always present. With this new construction, we establish that single-ion repulsive pair interaction energies are much larger than those of classical DLVO electrostatic potentials. The proposed single-ion electrostatic pair potential governs dramatic new dispersion behavior, including dispersions that are stable at a low volume fraction but unstable at a high volume fraction and finite volume-fraction dispersions that are unstable with fine particles but stable with coarse particles. The proposed single-counterion electrostatic pair potential provides a general expression for predicting colloidal behavior for any charged particle dispersion in ionizing solvents with no added electrolyte.
Collapse
Affiliation(s)
- Harsh Srivastav
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 201 Gilman, South Drive, Berkeley, California 94720, United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Building 30, Cyclotron Road, Berkeley, California 94720, United States
| | - Adam Z Weber
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Building 30, Cyclotron Road, Berkeley, California 94720, United States
| | - Clayton J Radke
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 201 Gilman, South Drive, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Zhang D, Ye K, Li X. Customizing Catalyst/Ionomer Interface for High-Durability Electrode of Proton Exchange Membrane Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46559-46570. [PMID: 37747785 DOI: 10.1021/acsami.3c11463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Commercialization applications of proton exchange membrane fuel cells (PEMFCs) are throttled by the durability issues of the electrodes prepared by using catalyst inks. Probing into a desirable catalyst/ionomer interface by adjusting the catalyst inks is an effective way for obtaining high-durability electrodes. The present study investigated quantitatively the catalyst/ionomer interfaces based on the viscosity (η) property of the isopropyl alcohol (IPA) and dipropylene glycol (DPG) nonaqueous mixture solvent for the first time. Accelerated stress test (AST) showed that η as one of the characteristic parameters of the solvent had a threshold effect on the durability of electrodes. The electrodes in the half-cell and single cell all exhibited the highest durability using IPA:DPG = 2:6 (η = 27.00 cP) as the dispersion solvent in this work, embodied by its ECSA loss rate, and the cell potential loss was minimum after AST. The ECSA loss mechanism showed that a fine catalyst/ionomer interface structure was created for the highest durability electrode by regulating the η values of the solvent, and the carbon corrosion loss (le) and Pt particle dissolution loss (ld) were weakened. Based on the molecular dynamics (MD) simulation and 19F NMR spectra results, the solvent ratio (various η and similar ε and δ) affected the dispersion states of the ionomer. For the catalyst inks with the highest durability (IPA:DPG = 2:6), the Nafion backbone and side chain presented a higher mobility behavior in the solvent and tended to show the structure of extension separation and the respective aggregation of hydrophilic/hydrophobic phases. Meanwhile, Pt slab models suggested that the side chain of Nafion more easily adhered to the Pt interface zone, while the backbone was pushed toward the carbon support interface zone as more DPG molecules distributed on the Pt surface, which reduced the dissolution of Pt particles and the corrosion of the carbon support. These catalyst/ionomer interface structures tailored by regulating the solvent η values provide insights into improving the electrode durability.
Collapse
Affiliation(s)
- Dongqing Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Sciences, Qingdao ,Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Ye
- Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Sciences, Qingdao ,Shandong 266101, China
| | - Xiaojin Li
- Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Sciences, Qingdao ,Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Energy Institute, Qingdao, Shandong 266101, China
| |
Collapse
|
5
|
Cui R, Li S, Yu C, Zhou Y. The Evolution of Hydrogen Bond Network in Nafion via Molecular Dynamics Simulation. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- Rui Cui
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shanlong Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chunyang Yu
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yongfeng Zhou
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
6
|
Li G, Zhu Y, Guo Y, Mabuchi T, Li D, Huang S, Wang S, Sun H, Tokumasu T. Deep Learning to Reveal the Distribution and Diffusion of Water Molecules in Fuel Cell Catalyst Layers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5099-5108. [PMID: 36652634 DOI: 10.1021/acsami.2c17198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Water management in the catalyst layers (CLs) of proton-exchange membrane fuel cells is crucial for its commercialization and popularization. However, the high experimental or computational cost in obtaining water distribution and diffusion remains a bottleneck in the existing experimental methods and simulation algorithms, and further mechanistic exploration at the nanoscale is necessary. Herein, we integrate, for the first time, molecular dynamics simulation with our customized analysis framework based on a multiattribute point cloud dataset and an advanced deep learning network. This was achieved through our workflow that generates simulated transport data of water molecules in the CLs as the training and test dataset. Deep learning framework models the multibody solid-liquid system of CLs on a molecular scale and completes the mapping from the Pt/C substrate structure and Nafion aggregates to the density distribution and diffusion coefficient of water molecules. The prediction results are comprehensively analyzed and error evaluated, which reveals the highly anisotropic interaction landscape between 50,000 pairs of interacting nanoparticles and explains the structure and water transport property relationship in the hydrated Nafion film on the molecular scale. Compared to the conventional methods, the proposed deep learning framework shows computational cost efficiency, accuracy, and good visual display. Further, it has a generality potential to model macro- and microscopic mass transport in different components of fuel cells. Our framework is expected to make real-time predictions of the distribution and diffusion of water molecules in CLs as well as establish statistical significance in the structural optimization and design of CLs and other components of fuel cells.
Collapse
Affiliation(s)
- Gaoyang Li
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai980-8577, Japan
| | - Yonghong Zhu
- School of Chemical Engineering, Northwest University, Xi'an710069Shaanxi, China
| | - Yuting Guo
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai980-8577, Japan
| | - Takuya Mabuchi
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai980-8577, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi980-8577, Japan
| | - Dong Li
- School of Chemical Engineering, Northwest University, Xi'an710069Shaanxi, China
| | - Shengfeng Huang
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai980-8577, Japan
| | - Sirui Wang
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba263-8522, Japan
| | - Haiyi Sun
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai980-8577, Japan
| | - Takashi Tokumasu
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai980-8577, Japan
| |
Collapse
|
7
|
Mabuchi T, Kijima J, Yamashita Y, Miura E, Muraoka T. Coacervate Formation of Elastin-like Polypeptides in Explicit Aqueous Solution Using Coarse-Grained Molecular Dynamics Simulations. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Takuya Mabuchi
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai, Miyagi980-8577, Japan
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai, Miyagi980-8577, Japan
| | - Junko Kijima
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai, Miyagi980-8577, Japan
| | - Yukino Yamashita
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho,
Koganei, Tokyo184-8588, Japan
| | - Erika Miura
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho,
Koganei, Tokyo184-8588, Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho,
Koganei, Tokyo184-8588, Japan
| |
Collapse
|
8
|
Wen Z, Wu D, Banham D, Chen M, Sun F, Zhao Z, Jin Y, Fan L, Xu S, Gu M, Fan J, Li H. Micromodification of the Catalyst Layer by CO to Increase Pt Utilization for Proton-Exchange Membrane Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:903-913. [PMID: 36542539 DOI: 10.1021/acsami.2c16524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Improving the utilization of platinum in proton-exchange membrane (PEM) fuel cells is critical to reducing their cost. In the past decade, numerous Pt-based oxygen reduction reaction catalysts with high specific and mass activities have been developed. However, the high activities are mostly achieved in rotating disk electrode (RDE) measurement and have rarely been accomplished at the membrane electrode assembly (MEA) level. The failure of these direct translations from RDE to MEA has been well documented with several key reasons having been previously identified. One of them is the resistance caused by complex mass transport pathways in the MEA. Herein, we improve the proton and oxygen transportations in the MEA by building a thin and uniform distribution of ionomer on the catalyst surface. As a result, a PEM fuel cell design is capable of showing a current density improvement of 38% at the same voltage (0.6 V) under the H2/air operation.
Collapse
Affiliation(s)
- Zengyin Wen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Duojie Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Dustin Banham
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan528000, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan528000, China
- Guangdong TaiJi Power, No. 25 Xingliang Road, Hecheng Street, Foshan528000, China
| | - Ming Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Fengman Sun
- Harbin Institute of Technology, Harbin150001, China
| | - Zhiliang Zhao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Yiqi Jin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Li Fan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Shaoyi Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen518055, Guangdong, China
| | - Meng Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Jiantao Fan
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen518055, Guangdong, China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen518055, China
| | - Hui Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development, Southern University of Science and Technology, Shenzhen518055, China
- Shenzhen Key Laboratory of Hydrogen Energy, Southern University of Science and Technology, Shenzhen518055, China
| |
Collapse
|
9
|
Xie B, Liu R, Han Y, Xu H, Jiang C, Wu H, Wang H. The polarized Raman spectra of N-methylpyrrolidone-an effective method for determination of intermolecular interaction and H-bond formation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121808. [PMID: 36063734 DOI: 10.1016/j.saa.2022.121808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/20/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
The isotropic and anisotropic component Raman spectra and H NMR of N-methylpyrrolidone (NMP)/carbon tetrachloride and NMP/methanol binary mixture at different volume fractions have been collected. The polarization Raman frequencies and frequency differences of CO stretching vibration for NMP/methanol mixture show unique concentration-dependence and abrupt jump feature. It is found that the H-bond between solute and solvent does not destroy the noncoincidence (NCE) phenomenon, but has a significant synergistic effect on the NCE. Two distinctive clusters constrained by H-bond and intermolecular interactions were easily determined by means of linear extension method from abrupt jump curve. The experimental phenomena can be well explained by aggregation-induced splitting theory with the proposed dimer structure and H-bond cluster model. Applying the same methodology the conformation of NMP in water has been determined successfully. The establishment of this method will play an important role in the determination of biomolecule aggregation behavior and supramolecular self-assembly structure.
Collapse
Affiliation(s)
- Binbin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, PR China
| | - Ruirui Liu
- Department of Chemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yufei Han
- Department of Chemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Han Xu
- Department of Chemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Caiying Jiang
- Department of Chemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huizhen Wu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Huigang Wang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, PR China.
| |
Collapse
|
10
|
Guo Y, Mabuchi T, Li G, Tokumasu T. Morphology Evolution and Adsorption Behavior of Ionomers from Solution to Pt/C Substrates. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuting Guo
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Takuya Mabuchi
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 2-1-1 Katahira Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Gaoyang Li
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Takashi Tokumasu
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
11
|
Guo Y, Li G, Mabuchi T, Surblys D, Ohara T, Tokumasu T. Prediction of nanoscale thermal transport and adsorption of liquid containing surfactant at solid–liquid interface via deep learning. J Colloid Interface Sci 2022; 613:587-596. [DOI: 10.1016/j.jcis.2022.01.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
|
12
|
Effect of Catalyst Ink and Formation Process on the Multiscale Structure of Catalyst Layers in PEM Fuel Cells. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The structure of a catalyst layer (CL) significantly impacts the performance, durability, and cost of proton exchange membrane (PEM) fuel cells and is influenced by the catalyst ink and the CL formation process. However, the relationship between the composition, formulation, and preparation of catalyst ink and the CL formation process and the CL structure is still not completely understood. This review, therefore, focuses on the effect of the composition, formulation, and preparation of catalyst ink and the CL formation process on the CL structure. The CL structure depends on the microstructure and macroscopic properties of catalyst ink, which are decided by catalyst, ionomer, or solvent(s) and their ratios, addition order, and dispersion. To form a well-defined CL, the catalyst ink, substrate, coating process, and drying process need to be well understood and optimized and match each other. To understand this relationship, promote the continuous and scalable production of membrane electrode assemblies, and guarantee the consistency of the CLs produced, further efforts need to be devoted to investigating the microstructure of catalyst ink (especially the catalyst ink with high solid content), the reversibility of the aged ink, and the drying process. Furthermore, except for the certain variables studied, the other manufacturing processes and conditions also require attention to avoid inconsistent conclusions.
Collapse
|
13
|
Prediction of the adsorption properties of liquid at solid surfaces with molecular scale surface roughness via encoding-decoding convolutional neural networks. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Michelarakis N, Franz F, Gkagkas K, Gräter F. Longitudinal strand ordering leads to shear thinning in Nafion. Phys Chem Chem Phys 2021; 23:25901-25910. [PMID: 34779459 DOI: 10.1039/d1cp02024b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton-exchange membrane fuel cells (PEMFC) offer a promising energy generation alternative for a wide range of technologies thanks to their ecological friendliness and unparalleled efficiency. At the heart of these electrochemical cells lies the membrane electrode assembly with its most important energy conversion components, the Proton Exchange Membrane. This component is created through the use of printing techniques and Nafion inks. The physicochemical properties of the ink, such as its viscosity under shear, are critical for the finished product. In this work we present non-equilibrium Molecular Dynamics simulations using a MARTINI based coarse-grained model for Nafion to understand the mechanism governing the shear viscosity of Nafion solutions. By simulating a Couette flow and calculating density maps of the Nafion chains in these simulations we shed light on the process that leads to the experimentally observed shear thinning effects of Nafion solutions under flow. We observe rod-shaped Nafion microstructures, 3 nm in size on average, when shear flow is absent or low. Higher shear rates instead break these structures and align Nafion strands along the direction of the flow, resulting in lower shear viscosities. Our work paves the way for a deeper understanding of the dynamic and mechanical properties of Nafion including studies of more complex CL and PEM inks.
Collapse
Affiliation(s)
- Nicholas Michelarakis
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Florian Franz
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Konstantinos Gkagkas
- Toyota Motor Europe, Technical Center, Toyota Motor Europe NVSA, Zavente, Belgium
| | - Frauke Gräter
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing, Heidelberg University, INF 205, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Preparation of Re-Dispersible Metal-Oxide Nanocomposite Particles Using Ionomers with Different EW for Enhanced Radical Scavenging Performance. Macromol Res 2021. [DOI: 10.1007/s13233-021-9068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Zhou S, Guan J, Li Z, Zhang Q, Zheng J, Li S, Zhang S. Synthesis of Fluorinated Poly(phenyl-alkane)s of Intrinsic Microporosity by Regioselective Aldehyde (A 2) + Aromatics (B 2) Friedel–Crafts Polycondensation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shengyang Zhou
- Key Laboratory of Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- University of Science and Technology of China, 96 Jinzhai Street, Hefei 230026, China
| | - Jiayu Guan
- Key Laboratory of Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- University of Science and Technology of China, 96 Jinzhai Street, Hefei 230026, China
| | - Ziqin Li
- Key Laboratory of Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- University of Science and Technology of China, 96 Jinzhai Street, Hefei 230026, China
| | - Qifeng Zhang
- Key Laboratory of Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Jifu Zheng
- Key Laboratory of Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Shenghai Li
- Key Laboratory of Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- University of Science and Technology of China, 96 Jinzhai Street, Hefei 230026, China
| | - Suobo Zhang
- Key Laboratory of Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- University of Science and Technology of China, 96 Jinzhai Street, Hefei 230026, China
| |
Collapse
|
17
|
Alessandri R, Grünewald F, Marrink SJ. The Martini Model in Materials Science. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008635. [PMID: 33956373 PMCID: PMC11468591 DOI: 10.1002/adma.202008635] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The Martini model, a coarse-grained force field initially developed with biomolecular simulations in mind, has found an increasing number of applications in the field of soft materials science. The model's underlying building block principle does not pose restrictions on its application beyond biomolecular systems. Here, the main applications to date of the Martini model in materials science are highlighted, and a perspective for the future developments in this field is given, particularly in light of recent developments such as the new version of the model, Martini 3.
Collapse
Affiliation(s)
- Riccardo Alessandri
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
- Present address:
Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Fabian Grünewald
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
| | - Siewert J. Marrink
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
| |
Collapse
|
18
|
Kuo AT, Urata S, Nakabayashi K, Watabe H, Honmura S. Coarse-Grained Molecular Dynamics Simulation of Perfluorosulfonic Acid Polymer in Water–Ethanol Mixtures. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- An-Tsung Kuo
- Innovative Technology Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Shingo Urata
- Innovative Technology Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | | | - Hiroyuki Watabe
- Materials Integration Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Satoru Honmura
- Materials Integration Laboratories, AGC Inc., Yokohama 230-0045, Japan
| |
Collapse
|
19
|
Mabuchi T, Huang SF, Tokumasu T. Influence of Ionomer Loading and Substrate Wettability on the Morphology of Ionomer Thin Films Using Coarse-Grained Solvent Evaporation Simulations. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Takuya Mabuchi
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Sheng-Feng Huang
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Takashi Tokumasu
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
20
|
Devivaraprasad R, Masuda T. Solvent-Dependent Adsorption of Perfluorosulfonated Ionomers on a Pt(111) Surface Using Atomic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13793-13798. [PMID: 33175533 DOI: 10.1021/acs.langmuir.0c02023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The adsorption behavior of perfluorosulfonated ionomers (PFSIs) on a Pt(111) surface in various solvents is investigated by in situ atomic force microscopy (AFM) and discussed on the basis of aggregation of PFSIs in the liquid phase. The AFM images show that, in an aqueous solution of PFSI (0.1 wt % Nafion + 99.9 wt % water), PFSI aggregates with a lateral size of 20-200 nm adsorb on the Pt(111) surface. In a PFSI solution containing a small amount of 1-propanol (0.1 wt % Nafion + 99.5 wt % water + 0.4 wt % 1-propanol), however, slightly smaller aggregates adsorb on the Pt(111) surface. Such solvent-dependent sizes of adsorbed aggregates are in reasonable agreement with apparent hydrodynamic radii of PFSIs in the corresponding solutions determined by dynamic light scattering (DLS) while assuming the formation of spherical aggregation. Interestingly, a step-terrace structure characteristic to a clean Pt(111) surface is observed in a propanol-rich PFSI solution (0.1 wt % Nafion + 44.45 wt % water + 55.45 wt % 1-propanol) but X-ray photoelectron spectroscopy clearly indicates the existence of fluorocarbon species at the Pt(111) surface, suggesting the formation of a smooth adsorbed layer of PFSIs in a lying down configuration. Absence of any features assignable to aggregates in DLS data suggests well-dispersion of PFSIs in such propanol-rich solution without aggregations. Thus, the adsorbed structure of PFSIs at Pt surfaces can be controlled by tuning the composition of mixed solvent, which affects the aggregation of PFSI in the liquid phase.
Collapse
Affiliation(s)
- Ruttala Devivaraprasad
- Surface Chemical Analysis Group, Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Takuya Masuda
- Surface Chemical Analysis Group, Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|