1
|
Zhou Z, Joshi VC, Guo Y, Xiang T, Wang Z, Sun CC. How elastically flexible can molecular crystals be? - a new record. Chem Sci 2025; 16:5797-5802. [PMID: 40123691 PMCID: PMC11927576 DOI: 10.1039/d5sc01260k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
The elastic strain limit, which quantifies the elastic flexibility of a material, is critical for technological applications of functional materials in a number of fields. Although the elastic flexibility of molecular crystals has been recognized, the extent of elastic flexibility of such materials remains to be defined. Here, we report a molecular crystal, i.e., form I polymorph of celecoxib (CEL), exhibiting exceptional elastic flexibility with an elastic strain of at least 8.70%. The record high elastic strain is accompanied by low Young's modulus (E = 3.18 ± 1.01 GPa) and hardness (H = 39.8 ± 15.6 MPa), as determined by single crystal nanoindentation, along with the high plasticity of the bulk powder observed in in-die Heckel analysis.
Collapse
Affiliation(s)
- Zhengzheng Zhou
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Hygiene Inspection & Quarantine Science, School of Public Health, Southern Medical University Guangzhou Guangdong 510515 China
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota Minneapolis MN 55455 USA
| | - Vikram Chandrashekhar Joshi
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota Minneapolis MN 55455 USA
| | - Yiwang Guo
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota Minneapolis MN 55455 USA
| | - Tianyi Xiang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota Minneapolis MN 55455 USA
| | - Zijian Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota Minneapolis MN 55455 USA
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
2
|
Tian C, Zhang Q, Xu J, Shi Q. Selective acceleration and inhibition of crystal growth of glass carbamazepine by low-concentration poly(ethylene oxide):effects of drug polymorph. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2025; 81:55-61. [PMID: 39700005 DOI: 10.1107/s2052520624010515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/30/2024] [Indexed: 12/21/2024]
Abstract
Drug polymorphism attracts considerable interest within the pharmaceutical field. Herein, we investigate the impact of low-concentration poly(ethylene oxide) (PEO) on the crystal growth of carbamazepine (CBZ) polymorphs in the glassy state. The addition of 3%(w/w) PEO increases 5.3-fold the bulk crystal growth rates of CBZ form III and 36.7-fold of form IV at 40°C (Tg -11°C). However, the same content of PEO exhibits a negligible effect on the bulk crystal growth of form I. In addition, the effects of PEO on the crystal growth of the CBZ polymorph at the free surface are also explored. In the presence of 3%(w/w) PEO, surface growth rates of forms III and IV of CBZ are accelerated by 4.7-fold and 3.1-fold, respectively. For comparison, the same content of PEO exhibits an unexpected inhibitory effect on the surface growth rates of form I. Molecular-dynamic simulations attribute these polymorph-dependent effects of PEO mainly to the polymer enrichment at the interface and different crystal surface polymer interactions. This study is relevant for understanding the crystallization of amorphous pharmaceutical solids containing polymorphic drugs.
Collapse
Affiliation(s)
- Chongchong Tian
- School of Pharmacy, Jiangsu Medical College, Yancheng, 224005 People's Republic of China
| | - Qi Zhang
- School of Pharmacy, Jiangsu Medical College, Yancheng, 224005 People's Republic of China
| | - Jia Xu
- School of Pharmacy, Jiangsu Medical College, Yancheng, 224005 People's Republic of China
| | - Qin Shi
- School of Pharmacy, Jiangsu Medical College, Yancheng, 224005 People's Republic of China
| |
Collapse
|
3
|
Svoboda R, Koutná N, Hynková M, Pakosta M. In Situ Raman Spectroscopy as a Valuable Tool for Monitoring Crystallization Kinetics in Molecular Glasses. Molecules 2024; 29:4769. [PMID: 39407696 PMCID: PMC11478080 DOI: 10.3390/molecules29194769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
The performance of in situ Raman microscopy (IRM) in monitoring the crystallization kinetics of amorphous drugs (griseofulvin and indomethacin) was evaluated using a comparison with the data obtained via differential scanning calorimetry (DSC). IRM was found to accurately and sensitively detect the initial stages of the crystal growth processes, including the rapid glass-crystal surface growth or recrystallization between polymorphic phases, with the reliable localized identification of the particular polymorphs being the main advantage of IRM over DSC. However, from the quantitative point of view, the reproducibility of the IRM measurements was found to be potentially significantly hindered due to inaccurate temperature recording and calibration, variability in the Raman spectra corresponding to the fully amorphous and crystalline phases, and an overly limited number of spectra possible to collect during acceptable experimental timescales because of the applied heating rates. Since theoretical simulations showed that, from the kinetics point of view, the constant density of collected data points per kinetic effect results in the smallest distortions, only the employment of the fast Raman mapping functions could advance the performance of IRM above that of calorimetric measurements.
Collapse
Affiliation(s)
- Roman Svoboda
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, nam. Cs. legii 565, 532 10 Pardubice, Czech Republic
| | - Nicola Koutná
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, nam. Cs. legii 565, 532 10 Pardubice, Czech Republic
| | - Magdalena Hynková
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, nam. Cs. legii 565, 532 10 Pardubice, Czech Republic
| | - Marek Pakosta
- Faculty of Electrical Engineering and Informatics, University of Pardubice, nam. Cs. legii 565, 530 02 Pardubice, Czech Republic
| |
Collapse
|
4
|
Luo M, Chen A, Huang C, Guo M, Cai T. Effects of Polymers on Cocrystal Growth in a Drug-Drug Coamorphous System: Relations between Glass-to-Crystal Growth and Surface-Enhanced Crystal Growth. Mol Pharm 2024; 21:3591-3602. [PMID: 38818946 DOI: 10.1021/acs.molpharmaceut.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Coamorphous and cocrystal drug delivery systems provide attractive crystal engineering strategies for improving the solubilities, dissolution rates, and oral bioavailabilities of poorly water-soluble drugs. Polymeric additives have often been used to inhibit the unwanted crystallization of amorphous drugs. However, the transformation of a coamorphous phase to a cocrystal phase in the presence of polymers has not been fully elucidated. Herein, we investigated the effects of low concentrations of the polymeric excipients poly(ethylene oxide) (PEO) and poly(vinylpyrrolidone) (PVP) on the growth of carbamazepine-celecoxib (CBZ-CEL) cocrystals from the corresponding coamorphous phase. PEO accelerated the growth rate of the cocrystals by increasing the molecular mobility of the coamorphous system, while PVP had the opposite effect. The coamorphous CBZ-CEL system exhibited two anomalously fast crystal growth modes: glass-to-crystal (GC) growth in the bulk and accelerated crystal growth at the free surface. These two fast growth modes both disappeared after doping with PEO (1-3% w/w) but were retained in the presence of PVP, indicating a potential correlation between the two fast crystal growth modes. We propose that the different effects of PEO and PVP on the crystal growth modes arose from weaker effects of the polymers on cocrystallization at the surface than in the bulk. This work provides a deep understanding of the mechanisms by which polymers influence the cocrystallization kinetics of a multicomponent amorphous phase and highlights the importance of polymer selection in stabilizing coamorphous systems or preparing cocrystals via solid-based methods.
Collapse
Affiliation(s)
- Minqian Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - An Chen
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chengbin Huang
- CMC Drug Product, Research and Development, BeiGene Co., Inc., Beijing 102206, China
| | - Minshan Guo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
5
|
Wang Y, Chin CY, Shivashekaregowda NKH, Shi Q. Implications of Low-concentration Polymer on the Physical Stability of Glassy Griseofulvin: Role of the Segmental Mobility. AAPS PharmSciTech 2024; 25:103. [PMID: 38714634 DOI: 10.1208/s12249-024-02809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/17/2024] [Indexed: 05/10/2024] Open
Abstract
Crystallization of amorphous pharmaceutical solids are widely reported to be affected by the addition of polymer, while the underlying mechanism require deep study. Herein, crystal growth behaviors of glassy griseofulvin (GSF) doped with various 1% w/w polymer were systematically studied. From the molecular structure, GSF cannot form the hydrogen bonding interactions with the selected polymer poly(vinyl acetate), polyvinyl pyrrolidone (PVP), 60:40 vinyl pyrrolidone-vinyl acetate copolymer (PVP/VA 64), and poly(ethylene oxide) (PEO). 1% w/w polymer exhibited weak or no detectable effects on the glass transition temperature (Tg) of GSF. However, crystal growth rates of GSF was altered from 4.27-fold increase to 2.57-fold decrease at 8 ℃ below Tg of GSF. Interestingly, the ability to accelerate and inhibit the growth rates of GSF crystals correlated well with Tg of polymer, indicating the controlling role of segmental mobility of polymer. Moreover, ring-banded growth of GSF was observed in the polymer-doped systems. Normal compact bulk and ring-banded crystals of GSF were both characterized as the thermodynamically stable form I. More importantly, formation of ring-banded crystals of GSF can significantly weaken the inhibitory effects of polymer on the crystallization of glassy GSF.
Collapse
Affiliation(s)
- Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
- Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Chai-Yee Chin
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya, 47500, Malaysia
| | - Naveen Kumar Hawala Shivashekaregowda
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya, 47500, Malaysia.
- Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia.
| | - Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China.
| |
Collapse
|
6
|
Zhang J, Yang Z, Luo L, Li K, Zi T, Ren J, Pan L, Wang Z, Wang Z, Liu M, Zeng Z. Impact of Poloxamer on Crystal Nucleation and Growth of Amorphous Clotrimazole. Pharmaceutics 2023; 15:2164. [PMID: 37631378 PMCID: PMC10460058 DOI: 10.3390/pharmaceutics15082164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/19/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Surfactants have been widely used as effective additives to increase the solubility and dissolution rates of amorphous solid dispersions (ASDs). However, they may also generate adverse effects on the physical stability of ASDs. In this study, we systematically investigated the impacts of poloxamer, a frequently used surfactant, on the crystallization of amorphous clotrimazole (CMZ). The added poloxamer significantly decreased the glass transition temperature (Tg) of CMZ and accelerated the growth of Form 1 and Form 2 crystals. It was found that the poloxamer had an accelerating effect on Form 1 and Form 2 but showed a larger accelerating effect on Form 1, which resulted from a combined effect of increased mobility and local phase separation at the crystal-liquid interface. Additionally, the added poloxamer exhibited different effects on nucleation of the CMZ polymorphs, which was more complicated than crystal growth. The nucleation rate of Form 1 was significantly increased by the added poloxamer, and the effect increased with increasing P407 content. However, for Form 2, nucleation was slightly decreased or unchanged. The nucleation of Form 2 may have been influenced by the Form 1 crystallization, and Form 2 converted to Form 1 during nucleation. This study increases our understanding of poloxamer and its impacts on the melt crystallization of drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Minzhuo Liu
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (J.Z.)
| | - Zhihong Zeng
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (J.Z.)
| |
Collapse
|
7
|
Li S, Liu B, Chen Z, Ou X, Rong H, Lu M. Ritonavir Revisited: Melt Crystallization Can Easily Find the Late-Appearing Polymorph II and Unexpectedly Discover a New Polymorph III. Mol Pharm 2023; 20:3854-3863. [PMID: 37450774 DOI: 10.1021/acs.molpharmaceut.2c00994] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Identification of a thermodynamically stable polymorph is an important step in the early stage of drug development. Ritonavir (RIT) is a well-known case where the most stable polymorph II emerged after being marketed, leading to a loss of $250 million. Herein, we report the findings that routine melt crystallization can reveal the late-appearing polymorph II of RIT at small supercooling, but the probability of nucleation is very low. The addition of 30-50% polyethylene glycol (PEG) promotes the crystallization of Form II as the only phase at low supercooling, making it easier to detect in polymorphism screening. During the course of our research, a new polymorph, denoted Form III, was unexpectedly discovered, crystallizing as the major phase from neat RIT melts. Single crystals of Form III were grown from melt microdroplets. Benefiting from the ability of synchrotron radiation to detect weak diffraction signals that cannot be accessible by a laboratory diffractometer, a reasonable structure of Form III was solved with slight disorder relative to thiazole groups (P1 space group and Z' = 4). The thermodynamic stability ranking of the three true polymorphs is Form II > Form I > Form III, as opposed to the order of solubility. The capacity to efficiently reveal rich polymorphs, especially the kinetically hindered polymorph, and rapidly grow single crystals of a new phase for structure determination together highlights the necessity of incorporating melt crystallization into routine methods for pharmaceutical polymorphism screening.
Collapse
Affiliation(s)
- Shuting Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Binbin Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ziqiao Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiao Ou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haowei Rong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
8
|
Zhang J, Liu M, Xu M, Chen Z, Peng X, Yang Q, Cai T, Zeng Z. Discovery of a new polymorph of clotrimazole through melt crystallization: Understanding nucleation and growth kinetics. J Chem Phys 2023; 158:034503. [PMID: 36681648 DOI: 10.1063/5.0130600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Clotrimazole (CMZ) is a classical antifungal drug for studying crystallization. In this study, a new CMZ polymorph (Form 2) was discovered during the process of nucleation and growth rate determination in the melt. High-quality single crystals were grown from melt microdroplets to determine the crystal structure by x-ray diffraction. Form 2 is metastable and exhibits a disordered structure. The crystal nucleation and growth kinetics of the two CMZ polymorphs were systematically measured. Form 2 nucleates and grows faster than the existing form (Form 1). The maximum nucleation rate of Forms 1 and 2 was observed at 50 °C (1.07 Tg). The summary of the maximum nucleation rate temperature of CMZ and the other six organic compounds indicates that nucleation near Tg in the supercooled liquid is a useful approach to discovering new polymorphs. This study is relevant for the discovering new drug polymorphs through an understanding of nucleation and growth kinetics during melt crystallization.
Collapse
Affiliation(s)
- Jie Zhang
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Minzhuo Liu
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Meixia Xu
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
| | - Zhiguo Chen
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Xucong Peng
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Qiusheng Yang
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhihong Zeng
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| |
Collapse
|
9
|
Burgos GL, Hernández-Espinell JR, Graciani-Massa T, Yao X, Borchardt-Setter KA, Yu L, López-Mejías V, Stelzer T. Role of Heteronucleants in Melt Crystallization of Crystalline Solid Dispersions. CRYSTAL GROWTH & DESIGN 2023; 23:49-58. [PMID: 38107196 PMCID: PMC10722868 DOI: 10.1021/acs.cgd.2c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Few publications exist concerning polymorphic control during melt crystallization, particularly when employing heteronucleants. Here, the influence of a polymeric thin film (polyethylene terephthalate, PET) on the crystallization from melt of the polymorphic compound acetaminophen (ACM) in polyethylene glycol (PEG) was investigated. Molten ACM-PEG at different compositions was monitored using in situ Raman spectroscopy for nucleation induction time measurements and phase identification. Furthermore, X-ray diffraction (XRD) served to analyze the preferred orientation (PO) of the pastilles (solidified melt droplets) on PET-coated and uncoated substrates. The results indicate that PET-coated substrates qualitatively accelerate the nucleation of ACM form II (ACM II) in PEG compared to uncoated glass substrates. Additionally, the occurrence of ACM II in PEG was increased by an average of 10% when crystallized on PET-coated substrates compared to uncoated substrates. Overall, these results suggest that ACM can interact through hydrogen bonding with the PET-coated substrate, leading to faster nucleation. This investigation illustrates the effect of PET-coated substrates in the selective crystallization of ACM II in PEG as crystalline solid dispersions (CSDs). Ultimately, the results suggest the implementation of polymeric heteronucleants in melt crystallization processes, specifically, in advanced polymer-based formulation processes for the enhanced polymorphic form control of pharmaceutical compounds in CSDs.
Collapse
Affiliation(s)
- Giovanni López Burgos
- Department of Pharmaceutical Sciences, University of Puerto Rico, San Juan, Puerto Rico 00936, United States; Molecular Sciences Research Center, Crystallization Design Institute, University of Puerto Rico, San Juan, Puerto Rico 00926, United States
| | - José R Hernández-Espinell
- Molecular Sciences Research Center, Crystallization Design Institute, University of Puerto Rico, San Juan, Puerto Rico 00926, United States; Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931, United States
| | - Tatiana Graciani-Massa
- Molecular Sciences Research Center, Crystallization Design Institute, University of Puerto Rico, San Juan, Puerto Rico 00926, United States; Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931, United States
| | - Xin Yao
- Department of Chemistry, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Kennedy A Borchardt-Setter
- Department of Chemistry, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lian Yu
- Department of Chemistry, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Vilmalí López-Mejías
- Molecular Sciences Research Center, Crystallization Design Institute, University of Puerto Rico, San Juan, Puerto Rico 00926, United States; Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931, United States
| | - Torsten Stelzer
- Department of Pharmaceutical Sciences, University of Puerto Rico, San Juan, Puerto Rico 00936, United States; Molecular Sciences Research Center, Crystallization Design Institute, University of Puerto Rico, San Juan, Puerto Rico 00926, United States
| |
Collapse
|
10
|
Shi Q, Chen H, Wang Y, Wang R, Xu J, Zhang C. Amorphous Solid Dispersions: Role of the Polymer and Its Importance in Physical Stability and In Vitro Performance. Pharmaceutics 2022; 14:pharmaceutics14081747. [PMID: 36015373 PMCID: PMC9413000 DOI: 10.3390/pharmaceutics14081747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
Amorphous solid dispersions stabilized by one or more polymer(s) have been widely used for delivering amorphous drugs with poor water solubilities, and they have gained great market success. Polymer selection is important for preparing robust amorphous solid dispersions, and considerations should be given as to how the critical attributes of a polymer can enhance the physical stability, and the in vitro and in vivo performances of a drug. This article provides a comprehensive overview for recent developments in the understanding the role of polymers in amorphous solid dispersions from the aspects of nucleation, crystal growth, overall crystallization, miscibility, phase separation, dissolution, and supersaturation. The critical properties of polymers affecting the physical stability and the in vitro performance of amorphous solid dispersions are also highlighted. Moreover, a perspective regarding the current research gaps and novel research directions for better understanding the role of the polymer is provided. This review will provide guidance for the rational design of polymer-based amorphous pharmaceutical solids with desired physicochemical properties from the perspective of physical stability and in vitro performance.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
- Correspondence: (Q.S.); (C.Z.)
| | - Haibiao Chen
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Ruoxun Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Jia Xu
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Chen Zhang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
- Correspondence: (Q.S.); (C.Z.)
| |
Collapse
|
11
|
Shi Q, Moinuddin SM, Wang Y, Ahsan F, Li F. Physical stability and dissolution behaviors of amorphous pharmaceutical solids: Role of surface and interface effects. Int J Pharm 2022; 625:122098. [PMID: 35961416 DOI: 10.1016/j.ijpharm.2022.122098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Amorphous pharmaceutical solids (APS) are single- or multi-component systems in which drugs exist in high-energy states with long-range disordered molecular packing. APSs have become one of the most effective and widely used pharmaceutical delivery approaches for poorly water-soluble drugs in the last several decades. Considerable efforts have been made to investigate the physical stability and dissolution behaviors of APSs, however, the underlying mechanisms remain imperfectly understood. Recent studies reveal that surface and interface properties of APSs could strongly affect the physical stability and dissolution behaviors. This paper provides a comprehensive overview of recent studies focusing on the physical stability and dissolution behaviors of APSs from both surface and interface perspectives. We highlight the role of surface or interface properties in nucleation, crystal growth, phase separation, dissolution, and supersaturation. Meanwhile, the challenges and scope of research on surface and interface properties in the future are also briefly discussed. This review contributes to a better understanding of the surface- and interface-facilitated processes, which will provide more efficient and rational guidance for the design of APSs.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China.
| | - Sakib M Moinuddin
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, Elk Grove, CA 95757, USA; East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Bldg. 650 2nd Floor, Rm. 2B121A, Mather, CA 95655, USA
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Fakhrul Ahsan
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, Elk Grove, CA 95757, USA; East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Bldg. 650 2nd Floor, Rm. 2B121A, Mather, CA 95655, USA.
| | - Fang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China.
| |
Collapse
|
12
|
Shi Q, Wang Y, Xu J, Liu Z, Chin CY. Fast crystal growth of amorphous nimesulide: implication of surface effects. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2022; 78:33-39. [PMID: 35129118 DOI: 10.1107/s2052520621012749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Understanding crystallization behaviors is of utmost importance for developing robust amorphous pharmaceutical solids. Herein, the crystal growth behaviors of amorphous anti-inflammatory drug nimesulide (NIME) are systemically investigated in the glassy and supercooled liquid state as a function of temperature. A sudden over-tenfold increase is observed in the bulk crystal growth of NIME on cooling below its glass transition temperature (Tg). This fast growth behavior is known as a glass-to-crystal (GC) mode and has been reported in some molecular glasses. Fast surface crystal growth of NIME can persist up to Tg + 57°C with a weak jump in its growth rates at 30-40°C. In addition, surface crystal growth and GC growth of NIME exhibit an almost identical temperature dependence, supporting the view that GC growth is indeed a surface-facilitated process. Moreover, the bubble-induced fast crystal growth of NIME is observed in the interior of its supercooled liquid with approximately the same growth kinetics as surface crystal growth. These findings are relevant for a full understanding of the surface-related crystallization behaviors and physical stability of amorphous pharmaceutical formulations.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiang Su Vocational College of Medicine, Yancheng, 224005, People's Republic of China
| | - Yanan Wang
- School of Pharmacy, Jiang Su Vocational College of Medicine, Yancheng, 224005, People's Republic of China
| | - Jia Xu
- School of Pharmacy, Jiang Su Vocational College of Medicine, Yancheng, 224005, People's Republic of China
| | - Ziying Liu
- School of Pharmacy, Jiang Su Vocational College of Medicine, Yancheng, 224005, People's Republic of China
| | - Chai Yee Chin
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya, Selangor 47500, Malaysia
| |
Collapse
|
13
|
Recent advances in drug polymorphs: Aspects of pharmaceutical properties and selective crystallization. Int J Pharm 2022; 611:121320. [PMID: 34843866 DOI: 10.1016/j.ijpharm.2021.121320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022]
Abstract
Drug polymorphism, an established term used to describe the phenomenon that a drug can exist in different crystalline phases, has attracted great interests in pharmaceutical field in consideration of its important role in affecting the pharmaceutical performance of oral formulations. This paper presents an overview of recent advances in the research on polymorphic drug systems including understandings on nucleation, crystal growth, dissolution, mechanical properties, polymorphic transformation, etc. Moreover, new strategies and mechanisms in the control of polymorphic forms are also highlighted in this review. Furthermore, challenges and trends in the development of polymorphic drugs are briefly discussed, aiming at developing effective and efficient pharmaceutical formulations containing the polymorphic drugs.
Collapse
|
14
|
Zhang J, Shi Q, Qu T, Zhou D, Cai T. Crystallization kinetics and molecular dynamics of binary coamorphous systems of nimesulide and profen analogs. Int J Pharm 2021; 610:121235. [PMID: 34743960 DOI: 10.1016/j.ijpharm.2021.121235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/07/2021] [Accepted: 10/23/2021] [Indexed: 12/31/2022]
Abstract
Coamorphous drug delivery systems have emerged as a promising formulation technique for improving the solubility and oral bioavailability of poorly soluble drugs. The selection of a suitable coformer is the key to obtaining a successful coamorphous formulation. This study aims to investigate the impacts of coformers with similar chemical structures but different physical properties on the crystallization behavior and molecular dynamics of binary amorphous systems. The addition of three profen analogs, ibuprofen (IBU), ketoprofen (KETO) and indoprofen (INDO) leads to significantly different effects on the crystallization kinetics of amorphous nimesulide (NIME). The crystal growth rates for amorphous NIME are substantially accelerated in the presence of IBU, but drastically reduced in the presence of INDO, while the incorporation of KETO results in a negligible effect. Broadband dielectric spectroscopy is employed to characterize the molecular dynamics of neat amorphous NIME and coamorphous systems. The addition of three structural analogs alters the molecular mobility of amorphous NIME in different ways, which is consistent with the trend observed for their impacts on the crystallization kinetics, suggesting that the relative mobility between the components of coamorphous mixtures governs the physical stability. In addition, it is found that the temperature dependence of the α-relaxation times for NIME with and without coformers is superimposed once the temperature is scaled by Tg/T, whereas the crystallization kinetics do not overlap on a Tg/T scale. This deviation can result from a complex interplay of thermodynamic and kinetic factors involved in multicomponent amorphous systems. This study provides insights into the crystallization kinetics and molecular dynamics of coamorphous systems containing drug analogs, which can potentially offer more flexibility for the control of physical stability without sacrificing therapeutic efficacy.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qin Shi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tengfei Qu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Dongshan Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Ting Cai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
15
|
Shi Q, Li F, Xu J, Wu L, Xin J, Chen H, Ling B. Bubble-induced fast crystal growth of indomethacin polymorphs in a supercooled liquid. J Appl Crystallogr 2021. [DOI: 10.1107/s1600576721007068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Physical stability is one of the main challenges when developing robust amorphous pharmaceutical formulations. This article reports fast crystal growth behaviors of the γ and α forms of indomethacin (IMC) initiated by bubbles in the interior of a supercooled liquid. Bubble-induced crystal growth of γ-IMC exhibits approximately the same kinetics as its surface crystal growth, supporting the view that bubble-induced crystal growth is a surface-facilitated process. In contrast, the rates of bubble-induced crystal growth of α-IMC are much faster than those of its surface crystal growth. These results indicate that the bubble-induced crystal growth not only depends on the interface created by the bubble but also strongly correlates with the true cavitation of the bubble. Moreover, bubble-induced fast crystal growth of γ- and α-IMC can be terminated at different temperatures by cooling. These outcomes are meaningful for the in-depth understanding of physical stability and pre-formulation study of amorphous pharmaceutical solids showing surface-facilitated crystal growth.
Collapse
|
16
|
Jia S, Gao Z, Tian N, Li Z, Gong J, Wang J, Rohani S. Review of melt crystallization in the pharmaceutical field, towards crystal engineering and continuous process development. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2020.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Zhang J, Liu Z, Wu H, Cai T. Effect of polymeric excipients on nucleation and crystal growth kinetics of amorphous fluconazole. Biomater Sci 2021; 9:4308-4316. [DOI: 10.1039/d1bm00104c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Three chemically distinct polymeric excipients show significantly different effects on the nucleation and crystal growth kinetics of amorphous fluconazole, a classical antifungal drug.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
| | - Zhengyu Liu
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
| | - Haomin Wu
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
| | - Ting Cai
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
| |
Collapse
|
18
|
Shi Q, Cheng J, Li F, Xu J, Zhang C. Molecular Mobility and Crystal Growth in Amorphous Binary Drug Delivery Systems: Effects of Low-Concentration Poly(Ethylene Oxide). AAPS PharmSciTech 2020; 21:317. [PMID: 33175339 DOI: 10.1208/s12249-020-01869-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022] Open
Abstract
Polymer additives have been widely reported to affect the crystallization of amorphous drugs, while the underlying mechanism is poorly understood. The present study aims to investigate the relationship between the crystal growth and the molecular mobility of amorphous nifedipine (NIF) in the presence and absence of low-concentration poly(ethylene oxide) (PEO). The addition of 3% w/w PEO yields approximately a 5-fold increase in the crystal growth rate of NIF in the glassy matrix and a 10-fold increase in the supercooled liquid. Broadband dielectric spectroscopy is performed to investigate the molecular mobility of amorphous pure NIF system and NIF doped with low-concentration PEO. With 3% w/w PEO, the structural relaxation time τα of amorphous NIF significantly decreases, indicating an increase in the global molecular mobility. However, the increase of the molecular mobility is insufficient to explain the 5- to 10-fold increase of the crystal growth rate at the same τα scale. Moreover, we compare the accelerating effect of PEO in NIF-PEO systems to other PEO-doped systems. The accelerating effect of low-concentration PEO on the crystal growth of amorphous drugs is found to be independent of the Flory-Huggins interaction, Tg of the drug, or the increase of the global molecular mobility. These findings suggest that an in-depth understanding regarding the effects of polymer additives on the crystallization of drugs should consider the localized mobility of the host molecules near the crystal-liquid interface.
Collapse
|