1
|
Bueno-Mancebo J, Barrena R, Artola A, Gea T, Altmajer-Vaz D. Surfactin as an ingredient in cosmetic industry: Benefits and trends. Int J Cosmet Sci 2024; 46:702-716. [PMID: 38481065 DOI: 10.1111/ics.12957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/08/2024] [Accepted: 02/10/2024] [Indexed: 09/25/2024]
Abstract
Surfactin is a natural surfactant almost exclusively produced by Bacillus species with excellent physical-chemical, and biological properties. Among innovative applications, surfactin has been recently used as an ingredient in formulations. The antibacterial and anti-acne activities, as well as the anti-wrinkle, moisturizing, and cleansing features, are some of the reasons this lipopeptide is used in cosmetics. Considering the importance of biosurfactants in the world economy and sustainability, their potential properties for cosmetic and dermatological products, and the importance of patents for technological advancement in a circular bioeconomy system, the present study aims to review all patents involving surfactin as an ingredient in cosmetic formulas. This review was conducted through Espacenet, wherein patents containing the terms "cosmetic" and "surfactin" in their titles, abstracts, or claims were examined. Those patents that detailed a specific surfactin dosage within their formulations were selected for analysis. All patents, irrespective of their publication date, from October 1989 to December 2022, were considered. Additionally, a comprehensive search was performed in the MEDLINE and EMBASE databases, spanning from their inception until the year 2023. This complementary search aimed to enrich the understanding derived from patents, with a specific emphasis on surfactin, encompassing its associated advantages, efficacy, mechanisms of action on the skin, as well as aspects related to sustainability and its merits in cosmetic formulations. From the 105 patents analysed, 75% belong to Japan (54), China (14), and Korea (9). Most of them were submitted by Asian companies such as Showa Denko (15), Kaneka (11) and Kao Corporation (5). The formulations described are mainly emulsions, skincare, cleansing, and haircare, and the surfactin dose does not exceed 5%. Surfactin appears in different types of formulas worldwide and has a high tendency to be used. Surfactin and other biosurfactants are a promising alternative to chemical ingredients in cosmetic formulations, guaranteeing skin health benefits and minimizing the impact on the environment.
Collapse
Affiliation(s)
- Jose Bueno-Mancebo
- Composting Research Group, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
- Chemical Engineering Department, Faculty of Science, University of Granada, Granada, Spain
| | - Raquel Barrena
- Composting Research Group, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Adriana Artola
- Composting Research Group, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Teresa Gea
- Composting Research Group, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Deisi Altmajer-Vaz
- Chemical Engineering Department, Faculty of Science, University of Granada, Granada, Spain
| |
Collapse
|
2
|
Badawey SE, Heikal L, Teleb M, Abu-Serie M, Bakr BA, Khattab SN, El-Khordagui L. Biosurfactant-amphiphilized hyaluronic acid: A dual self-assembly anticancer nanoconjugate and drug vector for synergistic chemotherapy. Int J Biol Macromol 2024; 271:132545. [PMID: 38815938 DOI: 10.1016/j.ijbiomac.2024.132545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Novel amphiphilic nanoconjugates of hyaluronic acid (HA), 50 kDa (HA50) and 100 kDa (HA100), and the lipopeptide biosurfactant surfactin (SF) were developed for potential anticancer applications. Physicochemical characterization indicated the formation of an ester conjugate (HA: SF molar ratio 1: 40) with the HA50-SF derivative exhibiting higher degree of substitution, hydrolytic stability, and surface activity. Self-assembly resulted in nanomicelles with smaller size and greater negative charge relative to SF micelles. Biological data demonstrated distinct anticancer activity of HA50-SF which displayed greater synergistic cytotoxicity and selectivity for MDA-MB 231 and MCF-7 breast cancer cells alongside greater modulation of apoptosis-related biomarkers leading to apoptosis. As bioactive vector for chemotherapeutic agents, the selected HA50-SF nanoconjugate efficiently (70 %) entrapped berberine (BER) producing a sustained release BER-HA50-SF synergistic anticancer nanoformulation. Lactoferrin (Lf) coating for dual HA/Lf targeting endowed Lf/BER-HA50-SF with significantly greater selectivity for both cell lines. A murine Ehrlich breast cancer model provided evidence for the efficacy and safety of Lf/BER-HA50-SF via tumoral, histological, immunohistochemical, molecular and systemic toxicity assessments. Thus, HA-SF nanoconjugates integrating the HA and SF properties and biofunctionalties present a novel biopolymer-biosurfactant platform of benefit to oncology nanomedicine and possibly other applications.
Collapse
Affiliation(s)
- Sara E Badawey
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Lamia Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Marwa Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University 21321, Egypt
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, 21321 Alexandria, Egypt
| | - Labiba El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
3
|
Qi X, Liu W, He X, Du C. A review on surfactin: molecular regulation of biosynthesis. Arch Microbiol 2023; 205:313. [PMID: 37603063 DOI: 10.1007/s00203-023-03652-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Surfactin has many biological activities, such as inhibiting plant diseases, resisting bacteria, fungi, viruses, tumors, mycoplasma, anti-adhesion, etc. It has great application potential in agricultural biological control, clinical medical treatment, environmental treatment and other fields. However, the low yield has been the bottleneck of its popularization and application. It is very important to understand the synthesis route and control strategy of surfactin to improve its yield and purity. In this paper, based on the biosynthetic pathway and regulatory factors of surfactin, its biosynthesis regulation strategy was comprehensively summarized, involving enhancement of endogenous and exogenous precursor supply, modification of the synthesis pathway of lipid chain and peptide chain, improvement of secretion and efflux, and manipulation some global regulatory factors, such as Spo0A, AbrB, ComQXP, phrCSF, etc. to directly or indirectly stimulate surfactin synthesis. And the current production and separation and purification process of surfactin are briefly described. This review also provides a scientific reference for promoting surfactin production and its applications in various fields.
Collapse
Affiliation(s)
- Xiaohua Qi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Wei Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xin He
- Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao, 066102, China
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
4
|
Sreedharan SM, Rishi N, Singh R. Microbial Lipopeptides: Properties, Mechanics and Engineering for Novel Lipopeptides. Microbiol Res 2023; 271:127363. [PMID: 36989760 DOI: 10.1016/j.micres.2023.127363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/04/2022] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Microorganisms produce active surface agents called lipopeptides (LPs) which are amphiphilic in nature. They are cyclic or linear compounds and are predominantly isolated from Bacillus and Pseudomonas species. LPs show antimicrobial activity towards various plant pathogens and act by inhibiting the growth of these organisms. Several mechanisms are exhibited by LPs, such as cell membrane disruption, biofilm production, induced systematic resistance, improving plant growth, inhibition of spores, etc., making them suitable as biocontrol agents and highly advantageous for industrial utilization. The biosynthesis of lipopeptides involves large multimodular enzymes referred to as non-ribosomal peptide synthases. These enzymes unveil a broad range of engineering approaches through which lipopeptides can be overproduced and new LPs can be generated asserting high efficacy. Such approaches involve several synthetic biology systems and metabolic engineering techniques such as promotor engineering, enhanced precursor availability, condensation domain engineering, and adenylation domain engineering. Finally, this review provides an update of the applications of lipopeptides in various fields.
Collapse
|
5
|
Singh RD, Kapila S, Ganesan NG, Rangarajan V. A review on green nanoemulsions for cosmetic applications with special emphasis on microbial surfactants as impending emulsifying agents. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Rishi Devendra Singh
- Department of Chemical Engineering Birla Institute of Technology and Science‐Pilani, K.K. Birla Goa Campus Zuarinagar Goa India
| | - Shreya Kapila
- Department of Chemical Engineering Birla Institute of Technology and Science‐Pilani, K.K. Birla Goa Campus Zuarinagar Goa India
| | - Neela Gayathri Ganesan
- Department of Chemical Engineering Birla Institute of Technology and Science‐Pilani, K.K. Birla Goa Campus Zuarinagar Goa India
| | - Vivek Rangarajan
- Department of Chemical Engineering Birla Institute of Technology and Science‐Pilani, K.K. Birla Goa Campus Zuarinagar Goa India
| |
Collapse
|
6
|
El-Sheridy NA, El-Moslemany RM, Ramadan AA, Helmy MW, El-Khordagui LK. Itraconazole for Topical Treatment of Skin Carcinogenesis: Efficacy Enhancement by Lipid Nanocapsule Formulations. J Biomed Nanotechnol 2022; 18:97-111. [PMID: 35180903 DOI: 10.1166/jbn.2022.3217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Itraconazole (ITC), an antifungal drug with anticancer activity, shows potential for oral treatment of skin cancer. There is clinical need for topical ITC for treating low-risk skin carcinogenesis. Our objective was to develop ITC nanoformulations with enhanced anticancer efficacy. Lipid nanocapsules (LNC), either unmodified (ITC/LNC) or modified with the amphiphiles miltefosine (ITC/MF-LNC) or the lipopeptide biosurfactant surfactin (ITC/SF-LNC) as bioactive additives were developed. LNC formulations showed high ITC entrapment efficiency (>98%), small diameter (42-45 nm) and sustained ITC release. Cytotoxicity studies using malignant SCC 9 cells and normal human fibroblasts (NHF) demonstrated significant enhancement of ITC anticancer activity and selectivity for cancer cells by the LNC formulations and a synergistic ITC-amphiphile interaction improving the combination performance. Treatment of intradermal tumor-bearing mice with the ITC nanoformulation gels compared with ITC and 5-FU gels achieved significant tumor growth inhibition that was remarkably enhanced by ITC/MF-LNC and ITC/SF-LNC as well as recovery of skin architecture. Molecularly, tumoral expression of Ki-67 and cytokeratin proliferative proteins was significantly suppressed by LNC formulations, the suppressive effect on cytokeratins was superior to that of 5-FU. These findings provide new evidence for effective topical treatment of low-risk skin carcinogenesis utilizing multiple approaches that involve drug repurposing, nanotechnology, and bioactive amphiphiles as formulation enhancing additives.
Collapse
Affiliation(s)
- Nabila A El-Sheridy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Alyaa A Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Maged W Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Beheira, Egypt
| | - Labiba K El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
7
|
Yi L, Kong J, Xiong Y, Yi S, Gan T, Huang C, Duan Y, Zhu X. Genome mining of Streptomyces sp. CB00271 as a natural high-producer of β-rubromycin and the resulting discovery of β-rubromycin acid. Biotechnol Bioeng 2021; 118:2243-2254. [PMID: 33629382 DOI: 10.1002/bit.27732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 11/06/2022]
Abstract
β-rubromycin (β-RUB) (1) is an efficient inhibitor of human telomerase possessing a unique spiroketal moiety as a potential pharmacophore and regarded as a promising anticancer drug lead. But the development of (β-RUB) (1) has long been hampered by its low titer and very poor water solubility. By adopting a genome mining strategy, an FAD-dependent monooxygenase RubN involving with the formation of the spiro system was applied as the probe and Streptomyces sp. CB00271 was screened out from our strain collection as an alternative natural high producer of β-RUB (1). After a series of fermentation optimizations, CB00271 could produce 124.8 ± 3.4 mg/L β-RUB (1), which was the highest titer up to now. Moreover, the enhanced production of β-RUB (1) in fermentation broth also led to the discovery of a new congener β-RUB acid (7), which was structurally elucidated as the acid form of β-RUB (1). Comparing to β-RUB (1), the substituted carboxyl group endowed β-RUB acid (7) much better solubility in serum and resulted in its higher activity towards tumor cells. Our work set up a solid base for the pilot-scale production of β-RUB (1) and its congeners to facilitate their future development as promising anticancer drug leads, and also provide an alternative and practical strategy for the exploitation of other important microbial natural products.
Collapse
Affiliation(s)
- Liwei Yi
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, China
| | - Jieqian Kong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, China
| | - Yi Xiong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, China
| | - Sirui Yi
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, China
| | - Ting Gan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, China
| | - Chengshuang Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan, China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan, China
| |
Collapse
|