1
|
Orszulak L, Włodarczyk P, Hachuła B, Lamrani T, Jurkiewicz K, Tarnacka M, Hreczka M, Kamiński K, Kamińska E. Inhibition of naproxen crystallization by polymers: The role of topology and chain length of polyvinylpyrrolidone macromolecules. Eur J Pharm Biopharm 2025; 207:114581. [PMID: 39608423 DOI: 10.1016/j.ejpb.2024.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024]
Abstract
This paper presents an innovative approach that utilizes self-synthesized homopolymers of polyvinylpyrrolidone (PVP) with different architectures as effective matrices for inhibiting the crystallization of naproxen (NAP). We have thoroughly investigated amorphous solid dispersions containing NAP and (i) self-synthesized linear PVP, (ii) self-synthesized three-armed star-shaped PVP, and (iii) self-synthesized linear PVP with a mass (Mn) corresponding to the length of one arm of the star polymer, as well as (iv) commercial linear PVP K30 as a reference. Differential scanning calorimetry, X-ray diffraction, and infrared spectroscopy studies, as well as molecular dynamics simulations were conducted to gain comprehensive insights into the thermal and structural properties, as well as intermolecular interactions in the NAP-PVP systems. The main purpose of all experiments was to assess the impact of macromolecule structure (topology, molecular weight) on the kinetics of the crystallization of NAP - a drug that is very difficult to vitrify. Our studies clearly showed that the most effective matrix in inhibiting the NAP crystallization is linear, self-synthesized PVP with higher molecular weight (Mn) similar to that of the commercial PVP K30, but lower, strictly controlled dispersity. We also found that crystallization of API proceeds at a similar pace for the binary mixture composed of a star-shaped PVP and linear polymer with Mn corresponding to Mn of one arm of the star-shaped macromolecule in the vicinity of the Tg. The obtained data highlight the key role of polymer structure in designing new pharmaceutical formulations.
Collapse
Affiliation(s)
- Luiza Orszulak
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9 40-007, Katowice, Poland.
| | - Patryk Włodarczyk
- Institute of Non Ferrous Metals, Sowinskiego 5 44-100, Gliwice, Poland
| | - Barbara Hachuła
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9 40-007, Katowice, Poland
| | - Taoufik Lamrani
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Karolina Jurkiewicz
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Magdalena Tarnacka
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Marek Hreczka
- Institute of Non Ferrous Metals, Sowinskiego 5 44-100, Gliwice, Poland; Department of Mechatronics, Silesian University of Technology, Akademicka 10A 44-100, Gliwice, Poland
| | - Kamil Kamiński
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4 41-200, Sosnowiec, Poland.
| |
Collapse
|
2
|
Zografi G, Newman A, Shalaev E. Structural features of the glassy state and their impact on the solid-state properties of organic molecules in pharmaceutical systems. J Pharm Sci 2025; 114:40-69. [PMID: 38768756 DOI: 10.1016/j.xphs.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
This paper reviews the structure and properties of amorphous active pharmaceutical ingredients (APIs), including small molecules and proteins, in the glassy state (below the glass transition temperature, Tg). Amorphous materials in the neat state and formulated with excipients as miscible amorphous mixtures are included, and the role of absorbed water in affecting glass structure and stability has also been considered. We defined the term "structure" to indicate the way the various molecules in a glass interact with each other and form distinctive molecular arrangements as regions or domains of varying number of molecules, molecular packing, and density. Evidence is presented to suggest that such systems generally exist as heterogeneous structures made up of high-density domains surrounded by a lower density arrangement of molecules, termed the microstructure. It has been shown that the method of preparation and the time frame for handling and storage can give rise to variable glass structures and varying physical properties. Throughout this paper, examples are given of theoretical, computer simulation, and experimental studies which focus on the nature of intermolecular interactions, the size of heterogeneous higher density domains, and the impact of such systems on the relative physical and chemical stability of pharmaceutical systems.
Collapse
Affiliation(s)
- George Zografi
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| | - Ann Newman
- Seventh Street Development Group LLC, Kure Beach, NC, United States.
| | | |
Collapse
|
3
|
Heczko D, Hachuła B, Maksym P, Kamiński K, Zięba A, Orszulak L, Paluch M, Kamińska E. The Effect of Various Poly ( N-vinylpyrrolidone) (PVP) Polymers on the Crystallization of Flutamide. Pharmaceuticals (Basel) 2022; 15:971. [PMID: 36015118 PMCID: PMC9414356 DOI: 10.3390/ph15080971] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, several experimental techniques were applied to probe thermal properties, molecular dynamics, crystallization kinetics and intermolecular interactions in binary mixtures (BMs) composed of flutamide (FL) and various poly(N-vinylpyrrolidone) (PVP) polymers, including a commercial product and, importantly, samples obtained from high-pressure syntheses, which differ in microstructure (defined by the tacticity of the macromolecule) from the commercial PVP. Differential Scanning Calorimetry (DSC) studies revealed a particularly large difference between the glass transition temperature (Tg) of FL+PVPsynth. mixtures with 10 and 30 wt% of the excipient. In the case of the FL+PVPcomm. system, this effect was significantly lower. Such unexpected findings for the former mixtures were strictly connected to the variation of the microstructure of the polymer. Moreover, combined DSC and dielectric measurements showed that the onset of FL crystallization is significantly suppressed in the BM composed of the synthesized polymers. Further non-isothermal DSC investigations carried out on various FL+10 wt% PVP mixtures revealed a slowing down of FL crystallization in all FL-based systems (the best inhibitor of this process was PVP Mn = 190 kg/mol). Our research indicated a significant contribution of the microstructure of the polymer on the physical stability of the pharmaceutical-an issue completely overlooked in the literature.
Collapse
Affiliation(s)
- Dawid Heczko
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Barbara Hachuła
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Paulina Maksym
- Institute of Material Science, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Kamil Kamiński
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Andrzej Zięba
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Luiza Orszulak
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Marian Paluch
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
4
|
Minecka A, Tarnacka M, Jurkiewicz K, Hachuła B, Wrzalik R, Bródka A, Kamiński K, Kamińska E. The impact of the size of acetylated cyclodextrin on the stability of amorphous metronidazole. Int J Pharm 2022; 624:122025. [PMID: 35850185 DOI: 10.1016/j.ijpharm.2022.122025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 11/27/2022]
Abstract
Modified oligosaccharides with cyclic topology seem to be promising excipients for the preparation of Amorphous Solid Dispersions (ASDs), especially with those Active Pharmaceutical Ingredients (APIs), which have a strong crystallization tendency from the amorphous/glassy state. Herein, the usefulness of two acetylated cyclodextrins (ac-α-CD and ac-β-CD) with various molecular weights (Mw) as stabilizers for the supercooled metronidazole (Met) has been discussed. X-ray diffraction (XRD) studies carried out on Met-acCDs mixtures (prepared in molar ratios from 1:2 to 5:1) showed that the system with ac-α-CD containing the highest amount of API (5:1 m/m) crystallizes immediately after preparation, whereas all Met-ac-β-CD ASDs remain stable. What is more, long-term XRD measurements confirmed that the Met-ac-α-CD 2:1 m/m system crystallizes after 100 days of storage in contrast to the same system containing ac-β-CD. The non-isothermal calorimetric data revealed that the activation barrier for crystallization (Ecr) in ASDs with the oligosaccharide having a greater Mw (i.e., composed of seven acGLU molecules) is slightly higher. Finally, to explain the differences in behavior between the mixtures with both acCDs, infrared studies, DFT calculations and Molecular Dynamics simulations were performed. All methods excluded the scenario of API incorporation inside the acCDs' core. On the other hand, obtained results suggested that in comparison to ac-α-CD, the greater amount of Met molecules might be bounded on the outside surface of ac-β-CD. Therefore, this modified saccharide is a better stabilizer of the examined API.
Collapse
Affiliation(s)
- Aldona Minecka
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland.
| | - Magdalena Tarnacka
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Karolina Jurkiewicz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Barbara Hachuła
- Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland
| | - Roman Wrzalik
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Aleksander Bródka
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Kamil Kamiński
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland.
| |
Collapse
|