1
|
Liang S, Zhao D, Liu X, Liu B, Li Y. The stomach, small intestine, and colon-specific gastrointestinal tract delivery systems for bioactive nutrients. Adv Colloid Interface Sci 2025; 341:103503. [PMID: 40209595 DOI: 10.1016/j.cis.2025.103503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 02/13/2025] [Accepted: 03/29/2025] [Indexed: 04/12/2025]
Abstract
Oral administration is a convenient way to deliver bioactive nutrients. However, the complex and dynamic environment of the gastrointestinal (GI) tract poses distinct challenges. These include the acidic environment of the stomach, limited transport across the GI mucosa, and the risk of enzymatic degradation, all of which can compromise the nutritional effectiveness of orally delivered nutrients. In response to these challenges, various GI tract delivery systems have been developed to target specific regions, such as the stomach, small intestine, or colon, to precisely control the release of bioactive nutrients and enhance their health-promoting benefits. This review critically examines the principles underlying stomach-, small intestine-, and colon-targeted delivery systems, highlighting the selection of appropriate wall materials and the interactions between delivery systems and the mucosal epithelial barrier. Moreover, we describe relevant biological models and quantitative analyses to measure these interactions. In particular, we emphasize the significant advantages offered by colon-targeted delivery systems in maintaining a healthy colonic microenvironment. This review aims to inspire novel concepts and stimulate further research into GI tract delivery systems, offering promising avenues for maximizing the therapeutic effects of bioactive nutrients in practical applications.
Collapse
Affiliation(s)
- Shuang Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Central Laboratory, NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Dongyu Zhao
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiangyu Liu
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Sha D, Yuan M, Zhang L, Li H. Characterization of insulin and bile acid complexes in liposome by different mass spectrometry techniques. Anal Bioanal Chem 2025; 417:1635-1647. [PMID: 39870873 DOI: 10.1007/s00216-025-05753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/28/2024] [Accepted: 01/17/2025] [Indexed: 01/29/2025]
Abstract
Insulin bound with ligand molecules can improve its bioavailability in oral formulations. In this work, the interactions between insulin and bile acids of taurocholic acid (TCA) and glycocholic acid (GCA) are characterized using different mass spectrometry (MS) methods. Electrospray (ESI)-MS analysis revealed that GCA and TCA could interact with insulin individually or together through non-covalent bonds, and the products included mGCA-insulin, nTCA-insulin, and mGCA-nTCA-insulin complexes. Their binding stoichiometry, relative intensity ratio (IRa), and binding affinity were determined. ESI-MS/MS data and the calculated association constants both suggest that TCA has stronger affinity to insulin than GCA. The mixtures of various insulin, GCA, and TCA complexes with different charge states were separated, and distinct trend lines were observed using ion mobility mass spectrometry (IMMS). Moreover, liposomes containing insulin and GCA and/or TCA were prepared, and directly characterized using ESI-MS, and the interaction products of insulin with GCA and TCA were found in the liposome formulation. AutoDock was used to simulate molecular binding and select binding sites between insulin and GCA or TCA to explore the interaction mechanisms. The findings in this work could help understand the mechanism of action of insulin protection with bile acids in the body.
Collapse
Affiliation(s)
- Dandan Sha
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Minghui Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Lin Zhang
- Waters Corporation (Shanghai) Ltd, Shanghai, 200126, China
| | - Hongli Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Zhang C, Liu F, Zhang Y, Song C. Macrocycles and macrocyclization in anticancer drug discovery: Important pieces of the puzzle. Eur J Med Chem 2024; 268:116234. [PMID: 38401189 DOI: 10.1016/j.ejmech.2024.116234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024]
Abstract
Increasing disease-related proteins have been identified as novel therapeutic targets. Macrocycles are emerging as potential solutions, bridging the gap between conventional small molecules and biomacromolecules in drug discovery. Inspired by successful macrocyclic drugs of natural origins, macrocycles are attracting more attention for enhanced binding affinity and target selectivity. Due to the conformation constraint and structure preorganization, macrocycles can reach bioactive conformations more easily than parent acyclic compounds. Also, rational macrocyclization combined with sequent structural modification will help improve oral bioavailability and combat drug resistance. This review introduces various strategies to enhance membrane permeability in macrocyclization and subsequent modification, such as N-methylation, intramolecular hydrogen bonding modulation, isomerization, and reversible bicyclization. Several case studies highlight macrocyclic inhibitors targeting kinases, HDAC, and protein-protein interactions. Finally, some macrocyclic agents targeting tumor microenvironments are illustrated.
Collapse
Affiliation(s)
- Chao Zhang
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China
| | - Fenfen Liu
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Chun Song
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
4
|
Asano D, Takakusa H, Nakai D. Oral Absorption of Middle-to-Large Molecules and Its Improvement, with a Focus on New Modality Drugs. Pharmaceutics 2023; 16:47. [PMID: 38258058 PMCID: PMC10820198 DOI: 10.3390/pharmaceutics16010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
To meet unmet medical needs, middle-to-large molecules, including peptides and oligonucleotides, have emerged as new therapeutic modalities. Owing to their middle-to-large molecular sizes, middle-to-large molecules are not suitable for oral absorption, but there are high expectations around orally bioavailable macromolecular drugs, since oral administration is the most convenient dosing route. Therefore, extensive efforts have been made to create bioavailable middle-to-large molecules or develop absorption enhancement technology, from which some successes have recently been reported. For example, Rybelsus® tablets and Mycapssa® capsules, both of which contain absorption enhancers, were approved as oral medications for type 2 diabetes and acromegaly, respectively. The oral administration of Rybelsus and Mycapssa exposes their pharmacologically active peptides with molecular weights greater than 1000, namely, semaglutide and octreotide, respectively, into systemic circulation. Although these two medications represent major achievements in the development of orally absorbable peptide formulations, the oral bioavailability of peptides after taking Rybelsus and Mycapssa is still only around 1%. In this article, we review the approaches and recent advances of orally bioavailable middle-to-large molecules and discuss challenges for improving their oral absorption.
Collapse
Affiliation(s)
- Daigo Asano
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan; (H.T.); (D.N.)
| | | | | |
Collapse
|
5
|
Zinc insulin hexamer loaded alginate zinc hydrogel: preparation, characterization and in vivo hypoglycemic ability. Eur J Pharm Biopharm 2022; 179:173-181. [PMID: 36087882 DOI: 10.1016/j.ejpb.2022.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/21/2022]
Abstract
Alginate zinc hydrogel loaded with zinc insulin hexamer was prepared and characterized for oral insulin administration. The hydrogel was fabricated by dripping zinc insulin hexamer into sodium alginate solution and followed by crosslinking by zinc chloride. SEM image reveals the zinc insulin hexamer was integrated into the matrix of hydrogel. Zinc insulin hexamer loaded hydrogel shows no obvious cytotoxicity to both HT29 and Caco-2 cells. The developed hydrogel retards the burst release of insulin in simulated gastric fluid but promotes the release when in simulated intestinal fluid. In the diabetic mice, zinc insulin hexamer loaded alginate hydrogel demonstrates significant and prolonged hypoglycemic effect.
Collapse
|
6
|
Schissel C, Farquhar CE, Malmberg AB, Loas A, Pentelute BL. Cell-Penetrating d-Peptides Retain Antisense Morpholino Oligomer Delivery Activity. ACS BIO & MED CHEM AU 2022; 2:150-160. [PMID: 37101743 PMCID: PMC10114648 DOI: 10.1021/acsbiomedchemau.1c00053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cell-penetrating peptides (CPPs) can cross the cell membrane to enter the cytosol and deliver otherwise nonpenetrant macromolecules such as proteins and oligonucleotides. For example, recent clinical trials have shown that a CPP attached to phosphorodiamidate morpholino oligomers (PMOs) resulted in higher muscle concentration, increased exon skipping, and dystrophin production relative to another study of the PMO alone in patients of Duchenne muscular dystrophy. Therefore, effective design and the study of CPPs could help enhance therapies for difficult-to-treat diseases. So far, the study of CPPs for PMO delivery has been restricted to predominantly canonical l-peptides. We hypothesized that mirror-image d-peptides could have similar PMO delivery activity as well as enhanced proteolytic stability, facilitating their characterization and quantification from biological milieu. We found that several enantiomeric peptide sequences could deliver a PMO-biotin cargo with similar activities while remaining stable against serum proteolysis. The biotin label allowed for affinity capture of fully intact PMO-peptide conjugates from whole-cell and cytosolic lysates. By profiling a mixture of these constructs in cells, we determined their relative intracellular concentrations. When combined with PMO activity, these concentrations provide a new metric for delivery efficiency, which may be useful for determining which peptide sequence to pursue in further preclinical studies.
Collapse
Affiliation(s)
- Carly
K. Schissel
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Charlotte E. Farquhar
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Annika B. Malmberg
- Sarepta
Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Andrei Loas
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley L. Pentelute
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute
of Technology, 500 Main
Street, Cambridge, Massachusetts 02142, United States
- Center
for Environmental Health Sciences, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad
Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
7
|
Li Y, Zhang W, Zhao R, Zhang X. Advances in oral peptide drug nanoparticles for diabetes mellitus treatment. Bioact Mater 2022; 15:392-408. [PMID: 35386357 PMCID: PMC8958389 DOI: 10.1016/j.bioactmat.2022.02.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
Abstract
Peptide drugs play an important role in diabetes mellitus treatment. Oral administration of peptide drugs is a promising strategy for diabetes mellitus because of its convenience and high patient compliance compared to parenteral administration routes. However, there are a series of formidable unfavorable conditions present in the gastrointestinal (GI) tract after oral administration, which result in the low oral bioavailability of these peptide drugs. To overcome these challenges, various nanoparticles (NPs) have been developed to improve the oral absorption of peptide drugs due to their unique in vivo properties and high design flexibility. This review discusses the unfavorable conditions present in the GI tract and provides the corresponding strategies to overcome these challenges. The review provides a comprehensive overview on the NPs that have been constructed for oral peptide drug delivery in diabetes mellitus treatment. Finally, we will discuss the rational application and give some suggestions that can be utilized for the development of oral peptide drug NPs. Our aim is to provide a systemic and comprehensive review of oral peptide drug NPs that can overcome the challenges in GI tract for efficient treatment of diabetes mellitus. •Oral administration of peptide drugs is a promising strategy for diabetes mellitus treatment •A series of formidable unfavorable conditions in gastrointestinal tract result in the low oral bioavailability of peptide drugs •Nanoparticles can improve the oral bioavailability of peptide drugs
Collapse
Affiliation(s)
- Yan Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Wen Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Ruichen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| |
Collapse
|
8
|
Park H, Otte A, Park K. Evolution of drug delivery systems: From 1950 to 2020 and beyond. J Control Release 2022; 342:53-65. [PMID: 34971694 PMCID: PMC8840987 DOI: 10.1016/j.jconrel.2021.12.030] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 02/03/2023]
Abstract
Modern drug delivery technology began in 1952 with the advent of the Spansule® sustained-release capsule technology, which can deliver a drug for 12 h after oral administration through an initial immediate dose followed by the remaining released gradually. Until the 1980s, oral and transdermal formulations providing therapeutic durations up to 24 h for small molecules dominated the drug delivery field and the market. The introduction of Lupron Depot® in 1989 opened the door for long-acting injectables and implantables, extending the drug delivery duration from days to months and occasionally years. Notably, the new technologies allowed long-term delivery of peptide and protein drugs, although limited to parenteral administration. The introduction of the first PEGylated protein, Adagen®, in 1990 marked the new era of PEGylation, resulting in Doxil® (doxorubicin in PEGylated liposome) in 1995, Movantik® (PEGylated naloxone - naloxegol) in 2014, and Onpattro® (Patisiran - siRNA in PEGylated lipid nanoparticle) in 2018. Drug-polymer complexes were introduced, e.g., InFed® (iron-dextran complex injection) in 1974 and Abraxane® (paclitaxel-albumin complex) in 2005. In 2000, both Mylotarg™ (antibody-drug conjugate - gemtuzumab ozogamicin) and Rapamune® (sirolimus nanocrystal formulation) were introduced. The year 2000 also marked the launching of the National Nanotechnology Initiative by the U.S. government, which was soon followed by the rest of the world. Extensive work on nanomedicine, particularly formulations designed to escape from endosomes after being taken by tumor cells, along with PEGylation technology, ultimately resulted in the timely development of lipid nanoparticle formulations for COVID-19 vaccine delivery in 2020. While the advances in drug delivery technologies for the last seven decades are breathtaking, they are only the tip of an iceberg of technologies that have yet to be utilized in an approved formulation or even to be discovered. As life expectancy continues to increase, more people require long-term care for various diseases. Filling the current and future unmet needs requires innovative drug delivery technologies to overcome age-old familiar hurdles, e.g., improving water-solubility of poorly soluble drugs, overcoming biological barriers, and developing more efficient long-acting depot formulations. The lessons learned from the past are essential assets for developing future drug delivery technologies implemented into products. As the development of COVID-19 vaccines demonstrated, meeting the unforeseen crisis of the uncertain future requires continuous cumulation of failures (as learning experiences), knowledge, and technologies. Conscious efforts of supporting diversified research topics in the drug delivery field are urgently needed more than ever.
Collapse
Affiliation(s)
- Haesun Park
- Akina, Inc., West Lafayette, IN 47906, United States of America
| | - Andrew Otte
- Purdue University, Departments of Biomedical Engineering and Pharmaceutics, West Lafayette, IN 47907, United States of America
| | - Kinam Park
- Akina, Inc., West Lafayette, IN 47906, United States of America; Purdue University, Departments of Biomedical Engineering and Pharmaceutics, West Lafayette, IN 47907, United States of America.
| |
Collapse
|
9
|
Kawagishi H, Yamada M. [A novel way of modification of AT 1 angiotensin receptors to alleviate neonatal and infantile heart failure]. Nihon Yakurigaku Zasshi 2021; 156:351-354. [PMID: 34719568 DOI: 10.1254/fpj.21059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Heart failure is an important cause of death of children. Especially, overt one within the preweaning period is fulminant and severe. However, there are no drugs with evidence for it. We recently found that angiotensin II (AngII) activates L-type Ca2+ channels through AT1 receptors (AT1R) and β-arrestin 2 in murine cardiac myocytes only in the preweaning period, indicating that AT1R/β-arrestin 2 pathway mediates positive inotropic effects before weaning. Indeed, β-arrestin-bias AT1R agonist (BBA), TRV027 caused significant long-lasting positive inotropic effects in preweaning mice without increasing serum aldosterone concentrations or inducing tachycardia, arrhythmias, increased cardiac oxygen consumption, and reactive oxygen species generation. TRV027 increased the peak amplitude of twitch Ca2+ transients not only in preweaning mouse cardiac myocytes but in human iPS cell-derived cardiac myocytes exhibiting the fetal to neonatal phenotype. Moreover, TRV027 also increased contraction of the compromised heart of the model knock-in mice mimicking human congenital dilated cardiomyopathy. Although ~80% of these mice died before weaning, TRV027 significantly increased their survival rate. TRV027 did not cause any obvious adverse effects on their preweaning wildtype littermates. Thus, we reason in this review that BBA can be important therapeutics for preweaning heart failure.
Collapse
Affiliation(s)
- Hiroyuki Kawagishi
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University.,Department of Molecular Pharmacology, Shinshu University School of Medicine
| | - Mitsuhiko Yamada
- Department of Molecular Pharmacology, Shinshu University School of Medicine
| |
Collapse
|
10
|
Sadiq IZ, Muhammad A, Mada SB, Ibrahim B, Umar UA. Biotherapeutic effect of cell-penetrating peptides against microbial agents: a review. Tissue Barriers 2021; 10:1995285. [PMID: 34694961 DOI: 10.1080/21688370.2021.1995285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Selective permeability of biological membranes represents a significant barrier to the delivery of therapeutic substances into both microorganisms and mammalian cells, restricting the access of drugs into intracellular pathogens. Cell-penetrating peptides usually 5-30 amino acids with the characteristic ability to penetrate biological membranes have emerged as promising antimicrobial agents for treating infections as well as an effective delivery modality for biological conjugates such as nucleic acids, drugs, vaccines, nanoparticles, and therapeutic antibodies. However, several factors such as antimicrobial resistance and poor drug delivery of the existing medications justify the urgent need for developing a new class of antimicrobials. Herein, we review cell-penetrating peptides (CPPs) used to treat microbial infections. Although these peptides are biologically active for infections, effective transduction into membranes and cargo transport, serum stability, and half-life must be improved for optimum functions and development of next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Sanusi Bello Mada
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Bashiru Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Umar Aliyu Umar
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|