1
|
Kimball WD, Lanzaro A, Hurd C, Jhaveri N, Huang J, Lewandowski J, Qian KK, Woldeyes MA, Majumdar R, Witek MA, Feng J, Gillilan RE, Huang Q, Marras AE, Truskett TM, Johnston KP. Growth of Clusters toward Liquid-Liquid Phase Separation of Monoclonal Antibodies as Characterized by Small-Angle X-ray Scattering and Molecular Dynamics Simulation. J Phys Chem B 2025; 129:2856-2871. [PMID: 40053704 DOI: 10.1021/acs.jpcb.4c07064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
In concentrated protein solutions, short-range attractions (SRAs) contribute to liquid-liquid phase separation (LLPS) as a function of temperature and salinity, particularly when the charge and thus long-range repulsions are low near the isoelectric point pI. Herein, we study how SRA and solution morphology vary with the approach to LLPS from increased SRA for two monoclonal antibodies (mAbs) as salt concentration is reduced near the pI. These properties are quantified using small-angle X-ray scattering (SAXS) interpreted via coarse-grained (CG) molecular dynamics (MD) simulations and compared with less descriptive properties from static and dynamic light scattering. Experimental structure factors are fit with a library of MD simulations for a CG 12-bead mAb model to determine the SRA strength (K) and cluster size distributions. Proximity to LLPS and clustering characteristics in mAb solutions are impacted by both net charge, which are modified by pH, and the strength of anisotropic electrostatic SRA (charge-charge, charge-dipole, hydrogen bonding, etc.), which are screened and weakened by added salts. The trends in LLPS are consistent with the reduced diffusion interaction parameter kD/B22ex for dilute solutions. However, greater insight is provided with SAXS along with CG-MD simulations; in particular, the growth of clusters is observed with the approach to LLPS with decreasing salinity over a wide range of concentrations.
Collapse
Affiliation(s)
- William D Kimball
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alfredo Lanzaro
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Christian Hurd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Neel Jhaveri
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jintian Huang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Joshua Lewandowski
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ken K Qian
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | | | - Ranajoy Majumdar
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Marta A Witek
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Jiangyan Feng
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Richard E Gillilan
- Center for High Energy X-ray Sciences at CHESS, Cornell University, Ithaca, New York 14853, United States
| | - Qingqiu Huang
- Center for High Energy X-ray Sciences at CHESS, Cornell University, Ithaca, New York 14853, United States
| | - Alexander E Marras
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Keith P Johnston
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Brudar S, Breydo L, Chung E, Dill KA, Ehterami N, Phadnis K, Senapati S, Shameem M, Tang X, Tayyab M, Hribar-Lee B. Antibody association in solution: cluster distributions and mechanisms. MAbs 2024; 16:2339582. [PMID: 38666507 PMCID: PMC11057677 DOI: 10.1080/19420862.2024.2339582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Understanding factors that affect the clustering and association of antibodies molecules in solution is critical to their development as therapeutics. For 19 different monoclonal antibody (mAb) solutions, we measured the viscosities, the second virial coefficients, the Kirkwood-Buff integrals, and the cluster distributions of the antibody molecules as functions of protein concentration. Solutions were modeled using the statistical-physics Wertheim liquid-solution theory, representing antibodies as Y-shaped molecular structures of seven beads each. We found that high-viscosity solutions result from more antibody molecules per cluster. Multi-body properties such as viscosity are well predicted experimentally by the 2-body Kirkwood-Buff quantity, G22, but not by the second virial coefficient, B22, and well-predicted theoretically from the Wertheim protein-protein sticking energy. Weakly interacting antibodies are rate-limited by nucleation; strongly interacting ones by propagation. This approach gives a way to relate micro to macro properties of solutions of associating proteins.
Collapse
Affiliation(s)
- Sandi Brudar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Leonid Breydo
- Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Elisha Chung
- Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Ken A. Dill
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Chemistry and Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Nasim Ehterami
- Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Ketan Phadnis
- Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Samir Senapati
- Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Mohammed Shameem
- Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Xiaolin Tang
- Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Muhammmad Tayyab
- Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Barbara Hribar-Lee
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Chowdhury AA, Manohar N, Lanzaro A, Kimball WD, Witek MA, Woldeyes MA, Majumdar R, Qian KK, Xu S, Gillilan RE, Huang Q, Truskett TM, Johnston KP. Characterizing Protein-Protein Interactions and Viscosity of a Monoclonal Antibody from Low to High Concentration Using Small-Angle X-ray Scattering and Molecular Dynamics Simulations. Mol Pharm 2023; 20:5563-5578. [PMID: 37782765 DOI: 10.1021/acs.molpharmaceut.3c00484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Understanding protein-protein interactions and formation of reversible oligomers (clusters) in concentrated monoclonal antibody (mAb) solutions is necessary for designing stable, low viscosity (η) concentrated formulations for processing and subcutaneous injection. Here we characterize the strength (K) of short-range anisotropic attractions (SRA) for 75-200 mg/mL mAb2 solutions at different pH and cosolute conditions by analyzing structure factors (Seff(q)) from small-angle X-ray scattering (SAXS) using coarse-grained molecular dynamics simulations. Best fit simulations additionally provide cluster size distributions, fractal dimensions, cluster occluded volume, and mAb coordination numbers. These equilibrium properties are utilized in a model to account for increases in viscosity caused by occluded volume in the clusters (packing effects) and dissipation of stress across lubricated fractal clusters. Seff(q) is highly sensitive to K at 75 mg/mL where mAbs can mutually align to form SRA contacts but becomes less sensitive at 200 mg/mL as steric repulsion due to packing becomes dominant. In contrast, η at 200 mg/mL is highly sensitive to SRA and the average cluster size from SAXS/simulation, which is observed to track the cluster relaxation time from shear thinning. By analyzing the distribution of sub-bead hot spots on the 3D mAb surface, we identify a strongly attractive hydrophobic patch in the complementarity determining region (CDR) at pH 4.5 that contributes to the high K and consequently large cluster sizes and high η. Adding NaCl screens electrostatic interactions and increases the impact of hydrophobic attraction on cluster size and raises η, whereas nonspecific binding of Arg attenuates all SRA, reducing η. The hydrophobic patch is absent at higher pH values, leading to smaller K, smaller clusters, and lower η. This work constitutes a first attempt to use SAXS and CG modeling to link both structural and rheological properties of concentrated mAb solutions to the energetics of specific hydrophobic patches on mAb surfaces. As such, our work opens an avenue for future research, including the possibility of designing coarse-grained models with physically meaningful interacting hot spots.
Collapse
Affiliation(s)
- Amjad A Chowdhury
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Neha Manohar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alfredo Lanzaro
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - William D Kimball
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Marta A Witek
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | | | - Ranajoy Majumdar
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Ken K Qian
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Shifeng Xu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Richard E Gillilan
- Center for High Energy X-ray Sciences at CHESS, Cornell University, Ithaca, New York 14853, United States
| | - Qingqiu Huang
- Center for High Energy X-ray Sciences at CHESS, Cornell University, Ithaca, New York 14853, United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Keith P Johnston
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Chowdhury AA, Manohar N, Witek MA, Woldeyes MA, Majumdar R, Qian KK, Kimball WD, Xu S, Lanzaro A, Truskett TM, Johnston KP. Subclass Effects on Self-Association and Viscosity of Monoclonal Antibodies at High Concentrations. Mol Pharm 2023; 20:2991-3008. [PMID: 37191356 DOI: 10.1021/acs.molpharmaceut.3c00023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The effects of a subclass of monoclonal antibodies (mAbs) on protein-protein interactions, formation of reversible oligomers (clusters), and viscosity (η) are not well understood at high concentrations. Herein, we quantify a short-range anisotropic attraction between the complementarity-determining region (CDR) and CH3 domains (KCDR-CH3) for vedolizumab IgG1, IgG2, or IgG4 subclasses by fitting small-angle X-ray scattering (SAXS) structure factor Seff(q) data with an extensive library of 12-bead coarse-grained (CG) molecular dynamics simulations. The KCDR-CH3 bead attraction strength was isolated from the strength of long-range electrostatic repulsion for the full mAb, which was determined from the theoretical net charge and a scaling parameter ψ to account for solvent accessibility and ion pairing. At low ionic strength (IS), the strongest short-range attraction (KCDR-CH3) and consequently the largest clusters and highest η were observed with IgG1, the subclass with the most positively charged CH3 domain. Furthermore, the trend in KCDR-CH3 with the subclass followed the electrostatic interaction energy between the CDR and CH3 regions calculated with the BioLuminate software using the 3D mAb structure and molecular interaction potentials. Whereas the equilibrium cluster size distributions and fractal dimensions were determined from fits of SAXS with the MD simulations, the degree of cluster rigidity under flow was estimated from the experimental η with a phenomenological model. For the systems with the largest clusters, especially IgG1, the inefficient packing of mAbs in the clusters played the largest role in increasing η, whereas for other systems, the relative contribution from stress produced by the clusters was more significant. The ability to relate η to short-range attraction from SAXS measurements at high concentrations and to theoretical characterization of electrostatic patches on the 3D surface is not only of fundamental interest but also of practical value for mAb discovery, processing, formulation, and subcutaneous delivery.
Collapse
Affiliation(s)
- Amjad A Chowdhury
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Neha Manohar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Marta A Witek
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | | | - Ranajoy Majumdar
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Ken K Qian
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - William D Kimball
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Shifeng Xu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alfredo Lanzaro
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Keith P Johnston
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Salipante PF. Microfluidic techniques for mechanical measurements of biological samples. BIOPHYSICS REVIEWS 2023; 4:011303. [PMID: 38505816 PMCID: PMC10903441 DOI: 10.1063/5.0130762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/30/2022] [Indexed: 03/21/2024]
Abstract
The use of microfluidics to make mechanical property measurements is increasingly common. Fabrication of microfluidic devices has enabled various types of flow control and sensor integration at micrometer length scales to interrogate biological materials. For rheological measurements of biofluids, the small length scales are well suited to reach high rates, and measurements can be made on droplet-sized samples. The control of flow fields, constrictions, and external fields can be used in microfluidics to make mechanical measurements of individual bioparticle properties, often at high sampling rates for high-throughput measurements. Microfluidics also enables the measurement of bio-surfaces, such as the elasticity and permeability properties of layers of cells cultured in microfluidic devices. Recent progress on these topics is reviewed, and future directions are discussed.
Collapse
Affiliation(s)
- Paul F. Salipante
- National Institute of Standards and Technology, Polymers and Complex Fluids Group, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
6
|
Chowdhury A, Manohar N, Guruprasad G, Chen AT, Lanzaro A, Blanco M, Johnston KP, Truskett TM. Characterizing Experimental Monoclonal Antibody Interactions and Clustering Using a Coarse-Grained Simulation Library and a Viscosity Model. J Phys Chem B 2023; 127:1120-1137. [PMID: 36716270 DOI: 10.1021/acs.jpcb.2c07616] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Attractive protein-protein interactions in concentrated monoclonal antibody (mAb) solutions may lead to the formation of clusters that increase viscosity. Here, we propose an analytical model that relates mAb solution viscosity to clustering by accounting for the contributions of suboptimal mAb packing within a cluster and cluster fractal dimension. The influence of short-range, anisotropic attractions and long-range Coulombic repulsion on cluster properties is investigated by analyzing the cluster-size distributions, cluster fractal dimensions, radial distribution functions, and static structure factors from a library of coarse-grained molecular dynamics simulations. The library spans a vast range of mAb charges and attractive interactions in solutions of varying ionic strength. We present a framework for combining the viscosity model and simulation library to successfully characterize the attraction, repulsion, and clustering of an experimental mAb in three different pH and cosolute conditions by fitting the measured viscosity or structure factor from small-angle X-ray scattering. At low ionic strength, the cluster-size distribution is impacted by strong charges, and both the viscosity and net charge or structure factor and net charge must be considered to deconvolute the effects of short-range attraction and long-range repulsion.
Collapse
Affiliation(s)
- Amjad Chowdhury
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas78712, United States
| | - Neha Manohar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas78712, United States
| | - Geetika Guruprasad
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas78712, United States
| | - Amy T Chen
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas78712, United States
| | - Alfredo Lanzaro
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas78712, United States
| | - Marco Blanco
- Analytical Enabling Capabilities, Analytical R&D, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Keith P Johnston
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas78712, United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas78712, United States.,Department of Physics, The University of Texas at Austin, Austin, Texas78712, United States
| |
Collapse
|
7
|
Zhong X, Mitra H, Veilleux JC, Simmons E, Shi GH, Ardekani AM. The role of liquid rheological properties on the injection process of a spring-driven autoinjector. Int J Pharm 2022; 628:122296. [DOI: 10.1016/j.ijpharm.2022.122296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
|
8
|
Lanzaro A, Yuan XF. A Microfluidic Prototype for High-Frequency, Large Strain Oscillatory Flow Rheometry. MICROMACHINES 2022; 13:mi13020256. [PMID: 35208380 PMCID: PMC8876528 DOI: 10.3390/mi13020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023]
Abstract
We introduce a “Rheo-chip” prototypical rheometer which is able to characterise model fluids under oscillatory flow at frequencies f up to 80 Hz and nominal strain up to 350, with sample consumption of less than 1 mL, and with minimum inertial effects. Experiments carried out with deionized (DI) water demonstrate that the amplitude of the measured pressure drop ΔPM falls below the Newtonian prediction at f≥ 3 Hz. By introducing a simple model which assumes a linear dependence between the back force and the dead volume within the fluid chambers, the frequency response of both ΔPM and of the phase delay could be modeled more efficiently. Such effects need to be taken into account when using this type of technology for characterising the frequency response of non-Newtonian fluids.
Collapse
|
9
|
Girelli A, Beck C, Bäuerle F, Matsarskaia O, Maier R, Zhang F, Wu B, Lang C, Czakkel O, Seydel T, Schreiber F, Roosen-Runge F. Molecular Flexibility of Antibodies Preserved Even in the Dense Phase after Macroscopic Phase Separation. Mol Pharm 2021; 18:4162-4169. [PMID: 34637319 PMCID: PMC8564753 DOI: 10.1021/acs.molpharmaceut.1c00555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Antibody therapies are typically based on high-concentration formulations that need to be administered subcutaneously. These conditions induce several challenges, inter alia a viscosity suitable for injection, sufficient solution stability, and preservation of molecular function. To obtain systematic insights into the molecular factors, we study the dynamics on the molecular level under strongly varying solution conditions. In particular, we use solutions of antibodies with poly(ethylene glycol), in which simple cooling from room temperature to freezing temperatures induces a transition from a well-dispersed solution into a phase-separated and macroscopically arrested system. Using quasi-elastic neutron scattering during in situ cooling ramps and in prethermalized measurements, we observe a strong decrease in antibody diffusion, while internal flexibility persists to a significant degree, thus ensuring the movement necessary for the preservation of molecular function. These results are relevant for a more dynamic understanding of antibodies in high-concentration formulations, which affects the formation of transient clusters governing the solution viscosity.
Collapse
Affiliation(s)
- Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Christian Beck
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.,Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Famke Bäuerle
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Olga Matsarskaia
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Ralph Maier
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Baohu Wu
- Jülich Centre for Neutron Science JCNS at MLZ, Forschungszentrum Jülich, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Christian Lang
- Jülich Centre for Neutron Science JCNS at MLZ, Forschungszentrum Jülich, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Orsolya Czakkel
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Tilo Seydel
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Felix Roosen-Runge
- Department of Biomedical Science and Biofilms-Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| |
Collapse
|