1
|
Adams JS, Sutar Y, Mukkirwar S, Miglani C, Date AA. Sweetening the Deal: Sweetener-Based Ionic Liquid of Albendazole Significantly Enhances Its Solubility and Oral Bioavailability. Mol Pharm 2025; 22:2568-2580. [PMID: 40257223 DOI: 10.1021/acs.molpharmaceut.4c01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Albendazole (ABZ) is a hydrophobic and weakly basic anthelmintic benzimidazole with a very low (5%) oral bioavailability. Conversion of hydrophobic ionizable drugs such as ABZ into ionic liquids (ILs) or liquid salts is an emerging strategy for improving their solubility and oral bioavailability. To date, FDA-approved non-nutritive anionic sweeteners have not been evaluated for the development of ILs of weakly basic and hydrophobic drugs. Hence, we evaluated the ability of various anionic non-nutritive sweeteners, acesulfame potassium (ACE-K), saccharin sodium (SAC-Na), and cyclamate sodium (CYM-Na), to transform ABZ into an IL. Interestingly, only ACE-K, upon interaction with ABZ at the ABZ to ACE molar ratio of 1:2, converted ABZ into a room-temperature IL [ABZ-ACE (1:2) IL], whereas SAC-Na and CYM-Na yielded salts or coamorphous systems. The interaction of ABZ with anionic sweeteners was confirmed using FT-IR and NMR. Compared to pure ABZ, all ABZ-sweetener ILs/salts/coamorphous systems displayed a 1.2- to 2-fold decrease in Log P value and a significant increase in the equilibrium solubility of ABZ in water, pH 1.2 buffer, and pH 6.8 buffer. ABZ-ACE (1:2) IL exhibited remarkably higher (∼92-fold) solubility in water and ∼5-fold improvement in pH 6.8 buffer solubility, with a complete lack of crystallinity at room temperature, even after 1 month of storage at room temperature. Finally, compared to ABZ oral suspension, orally delivered ABZ-ACE (1:2) IL showed an 11-fold increment in Cmax and a 7.6-fold increase in the oral bioavailability of ABZ in mice. Hence, the development of a sweetener-based IL could be an effective approach to improving the solubility and oral bioavailability of hydrophobic weakly basic drugs, including ABZ.
Collapse
Affiliation(s)
- Joseph S Adams
- Department of Pharmacology and Toxicology, R. K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Yogesh Sutar
- Department of Pharmacology and Toxicology, R. K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Srushti Mukkirwar
- Department of Pharmacology and Toxicology, R. K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Chirag Miglani
- Department of Pharmacology and Toxicology, R. K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Abhijit A Date
- Department of Pharmacology and Toxicology, R. K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
- Department of Ophthalmology and Vision Science, University of Arizona College of Medicine, Tucson, Arizona 85711, United States
| |
Collapse
|
2
|
Sangiorgi S, Albertini B, Bertoni S, Passerini N. An Overview on the Role of Ionic Liquids and Deep Eutectic Solvents in Oral Pharmaceuticals. Pharmaceutics 2025; 17:300. [PMID: 40142964 PMCID: PMC11946670 DOI: 10.3390/pharmaceutics17030300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/28/2025] Open
Abstract
Over the past twenty years, ionic liquids (ILs) and deep eutectic solvents (DESs) have gained recognition across various fields, including catalysis, extraction and purification, materials science, and biotechnology. Notably, the use of ILs and DESs in pharmaceutical research, especially in drug delivery, has seen remarkable expansion over the past decade. This review offers a comprehensive analysis of ILs and DESs specifically designed for the oral administration of drugs having unfavorable biopharmaceutical properties. The classification and characteristics of ILs and DESs, along with their newer natural (Bio-ILs and NaDESs) and therapeutic subcategories (API-ILs and TheDESs) are outlined. Additionally, a further subgroup of ILs, known as surface active ionic liquids (SAILs), is described. Then, a detailed examination of the available manufacturing methods in a sustainable, time-consuming, and scalable perspective, and toxicity concerns in relation to their subdivision are evaluated. Finally, their specific applications in oral drug delivery, whether used as neat solvents or converted into administrable dosage forms, are analyzed and discussed. Despite the significant advancements in recent years regarding the use of these solvents in oral drug delivery, there are still many aspects that need further investigation. These include their interaction with biological systems (gastrointestinal fluids and mucosa), their long-term stability, and the development of effective drug delivery systems.
Collapse
Affiliation(s)
| | - Beatrice Albertini
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, I-40127 Bologna, Italy; (S.S.); (S.B.); (N.P.)
| | | | | |
Collapse
|
3
|
Darne P, Vidhate S, Shintre S, Wagdare S, Bhamare D, Mehta N, Rajagopalan V, Padmanabhan S. Advancements in Antiviral Therapy: Favipiravir Sodium in Nasal Formulation. AAPS PharmSciTech 2024; 25:273. [PMID: 39592539 DOI: 10.1208/s12249-024-02986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Favipiravir (FPV) is an Active Pharmaceutical Ingredient (API) known to have lower solubility in aqueous solvents. In the current study, efforts were made to generate a crystalline Favipiravir Sodium Salt (NaFPV) for enhanced solubility in aqueous media. The in-house generated NaFPV was characterized by NMR studies and its sodium content was determined by Flame Emission Spectroscopy (FES) as a confirmation of salt formation. Its solubility was determined where-in the solubility of NaFPV in water was about 100 times greater than FVP. FPV and NaFPV nasal spray formulations were prepared and its activity was determined against human coronavirus (hCoV) 229E strain. In the anti-hCoV assay as compared to FPV, NaFPV showed almost threefold higher anti-viral activity than its unmodified counterpart. Accelerated stability and spray pattern characteristics of both the formulations were studied. Interestingly, NaFPV showed higher physical stability during storage at conditions 40 ± 2 °C/ 75% ± 5% RH. The nasal spray formulations of both FPV and NaFPV showed ideal plume geometry and spray pattern of acceptable specifications. Due to its improvement in terms of solubility, NaFPV will have higher rate and extent of absorption, and faster onset of the therapeutic effect and may appear to be a feasible alternative to regular favipiravir for use in solid dosage forms.
Collapse
Affiliation(s)
- Priti Darne
- Innovation and Drug Discovery Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India
| | - Shankar Vidhate
- Innovation and Drug Discovery Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India
| | - Somesh Shintre
- Innovation and Drug Discovery Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India
| | - Somnath Wagdare
- Analytical Development Laboratory Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India
| | - Dhiraj Bhamare
- Analytical Development Laboratory Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India
| | - Nisha Mehta
- Innovation and Drug Discovery Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India
| | - Vishal Rajagopalan
- Innovation and Drug Discovery Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India
| | - Sriram Padmanabhan
- Innovation and Drug Discovery Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India.
| |
Collapse
|
4
|
Helmy AM, Lu A, Duggal I, Rodrigues KP, Maniruzzaman M. Electromagnetic drop-on-demand (DoD) technology as an innovative platform for amorphous solid dispersion production. Int J Pharm 2024; 658:124185. [PMID: 38703932 DOI: 10.1016/j.ijpharm.2024.124185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Production of amorphous solid dispersions (ASDs) is an effective strategy to promote the solubility and bioavailability of poorly water soluble medicinal substances. In general, ASD is manufactured using a variety of classic and modern techniques, most of which rely on either melting or solvent evaporation. This proof-of-concept study is the first ever to introduce electromagnetic drop-on-demand (DoD) technique as an alternative solvent evaporation-based method for producing ASDs. Herein 3D printing of ASDs for three drug-polymer combinations (efavirenz-Eudragit L100-55, lumefantrine-hydroxypropyl methylcellulose acetate succinate, and favipiravir-polyacrylic acid) was investigated to ascertain the reliability of this technique. Polarized light microscopy, differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and Fourier Transform Infrared (FTIR) spectroscopy results supported the formation of ASDs for the three drugs by means of DoD 3D printing, which significantly increases the equilibrium solubility of efavirenz from 0.03 ± 0.04 µg/ml to 21.18 ± 4.20 µg/ml, and the equilibrium solubility of lumefantrine from 1.26 ± 1.60 µg/ml to 20.21 ± 6.91 µg/ml. Overall, the reported findings show how this new electromagnetic DoD technology can have a potential to become a cutting-edge 3D printing solvent-evaporation technique for on-demand and continuous manufacturing of ASDs for a variety of drugs.
Collapse
Affiliation(s)
- Abdelrahman M Helmy
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Deraya University, Minya, Egypt
| | - Anqi Lu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ishaan Duggal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kristina P Rodrigues
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mohammed Maniruzzaman
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677-1848, USA.
| |
Collapse
|
5
|
Hamadani CM, Mahdi F, Merrell A, Flanders J, Cao R, Vashisth P, Dasanayake GS, Darlington DS, Singh G, Pride MC, Monroe WG, Taylor GR, Hunter AN, Roman G, Paris JJ, Tanner EEL. Ionic Liquid Coating-Driven Nanoparticle Delivery to the Brain: Applications for NeuroHIV. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305484. [PMID: 38572510 PMCID: PMC11186118 DOI: 10.1002/advs.202305484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/28/2023] [Indexed: 04/05/2024]
Abstract
Delivering cargo to the central nervous system (CNS) remains a pharmacological challenge. For infectious diseases such as HIV, the CNS acts as a latent reservoir that is inadequately managed by systemic antiretrovirals (ARTs). ARTs thus cannot eradicate HIV, and given CNS infection, patients experience neurological deficits collectively referred to as "neuroHIV". Herein, the development of bioinspired ionic liquid-coated nanoparticles (IL-NPs) for in situ hitchhiking on red blood cells (RBCs) is reported, which enables 48% brain delivery of intracarotid arterial- infused cargo. Moreover, IL choline trans-2-hexenoate (CA2HA 1:2) demonstrates preferential accumulation in parenchymal microglia over endothelial cells post-delivery. This study further demonstrates successful loading of abacavir (ABC), an ART that is challenging to encapsulate, into IL-NPs, and verifies retention of antiviral efficacy in vitro. IL-NPs are not cytotoxic to primary human peripheral blood mononuclear cells (PBMCs) and the CA2HA 1:2 coating itself confers notable anti-viremic capacity. In addition, in vitro cell culture assays show markedly increased uptake of IL-NPs into neural cells compared to bare PLGA nanoparticles. This work debuts bioinspired ionic liquids as promising nanoparticle coatings to assist CNS biodistribution and has the potential to revolutionize the delivery of cargos (i.e., drugs, viral vectors) through compartmental barriers such as the blood-brain-barrier (BBB).
Collapse
Affiliation(s)
- Christine M. Hamadani
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| | - Fakhri Mahdi
- Department of BioMolecular SciencesThe University of MississippiUniversityMS38677USA
| | - Anya Merrell
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| | - Jack Flanders
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| | - Ruofan Cao
- Department of BioMolecular SciencesThe University of MississippiUniversityMS38677USA
| | - Priyavrat Vashisth
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| | - Gaya S. Dasanayake
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| | - Donovan S. Darlington
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| | - Gagandeep Singh
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| | - Mercedes C. Pride
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| | - Wake G. Monroe
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| | - George R. Taylor
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| | - Alysha N. Hunter
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| | - Gregg Roman
- Department of BioMolecular SciencesThe University of MississippiUniversityMS38677USA
| | - Jason J. Paris
- Department of BioMolecular SciencesThe University of MississippiUniversityMS38677USA
| | - Eden E. L. Tanner
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| |
Collapse
|
6
|
Hajibabaei F, Movafagh SS, Salehzadeh S, Gable RW. Complexation of drug amifampridine with Cu(II), Zn(II) and Cd(II) ions, and its dimerization with the magic of Mn(II) salts. Potential anti-COVID-19 and anticancer activities. Dalton Trans 2024; 53:1066-1086. [PMID: 38099626 DOI: 10.1039/d3dt03281g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The different behaviors of the drug amifampridine (AMP) against Mn(II), Cu(II), Zn(II) and Cd(II) metal ions, in the presence and absence of tris(2-aminoethyl)amine (tren) was studied. The results showed that AMP successfully coordinates with Cu(II), Zn(II) and Cd(II) metal ions, but interestingly it undergoes an unexpected dimerization through a C-H activation in the presence of different Mn(II) salts. A four-coordinate complex of zinc(II), [Zn(AMP)2Cl2] (1), a binuclear complex of cadmium(II), [Cd2(AMP)2Cl4] (2), three five-coordinate tren-based metal complexes, [Cu(tren)(AMP)](ClO4)2 (8), [Zn(tren)(AMP)]Cl2 (9) and [Cd(tren)(AMP)](ClO4)2 (10), three pyridinium salts, [AmpDimer]X (X = Cl-, NO3-, ClO4-; (3, 4 & 5)), and also two four-coordinate metal complexes with this pyridinium cation, [Zn(AmpDimer)Cl3] (6) and [Cd(AmpDimer)Cl3] (7), were synthesized. All new compounds were characterized by elemental analysis and IR spectroscopy, and by 1H- and 13C-NMR spectroscopy (for 1, 2, 3, 6, 7, 9 & 10) and by X-ray crystal structure determinations (for 1, 3, 4, 5, 7, 8 & 10). Theoretical studies showed that the [M(tren)(AMP)]2+ cations act as pH-sensitive drug carriers of AMP and release it upon protonation. The molecular docking studies on the interaction of AMP and the above complexes/salts with DNA and the proteins of SARS-CoV-2 showed that the synthesized complexes/salts have greater anticancer and anti-covid-19 activities than AMP alone.
Collapse
Affiliation(s)
- Farshid Hajibabaei
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.
| | | | - Sadegh Salehzadeh
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.
| | | |
Collapse
|
7
|
Uniyal P, Das S, Panwar S, Kukreti N, Nainwal P, Bhatia R. A Comprehensive Review on Imperative Role of Ionic Liquids in Pharmaceutical Sciences. Curr Drug Deliv 2024; 21:1197-1210. [PMID: 37815183 DOI: 10.2174/0115672018255191230921035859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 10/11/2023]
Abstract
Ionic liquids (ILs) are poorly-coordinated ionic salts that can exist as a liquid at room temperatures (or <100 °C). ILs are also referred to as "designer solvents" because so many of them have been created to solve particular synthetic issues. ILs are regarded as "green solvents" because they have several distinctive qualities, including better ionic conduction, recyclability, improved solvation ability, low volatility, and thermal stability. These have been at the forefront of the most innovative fields of science and technology during the past few years. ILs may be employed in new drug formulation development and drug design in the field of pharmacy for various functions such as improvement of solubility, targeted drug delivery, stabilizer, permeability enhancer, or improvement of bioavailability in the development of pharmaceutical or vaccine dosage formulations. Ionic liquids have become a key component in various areas such as synthetic and catalytic chemistry, extraction, analytics, biotechnology, etc., due to their superior abilities along with highly modifiable potential. This study concentrates on the usage of ILs in various pharmaceutical applications enlisting their numerous purposes from the delivery of drugs to pharmaceutical synthesis. To better comprehend cuttingedge technologies in IL-based drug delivery systems, highly focused mechanistic studies regarding the synthesis/preparation of ILs and their biocompatibility along with the ecotoxicological and biological effects need to be studied. The use of IL techniques can address key issues regarding pharmaceutical preparations such as lower solubility and bioavailability which plays a key role in the lack of effectiveness of significant commercially available drugs.
Collapse
Affiliation(s)
- Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Shibam Das
- Department of pharmaceutical technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Surbhi Panwar
- School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Pankaj Nainwal
- School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T. Road MOGA-142001, Punjab, India
| |
Collapse
|
8
|
Hu Y, Xing Y, Yue H, Chen T, Diao Y, Wei W, Zhang S. Ionic liquids revolutionizing biomedicine: recent advances and emerging opportunities. Chem Soc Rev 2023; 52:7262-7293. [PMID: 37751298 DOI: 10.1039/d3cs00510k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Ionic liquids (ILs), due to their inherent structural tunability, outstanding miscibility behavior, and excellent electrochemical properties, have attracted significant research attention in the biomedical field. As the application of ILs in biomedicine is a rapidly emerging field, there is still a need for systematic analyses and summaries to further advance their development. This review presents a comprehensive survey on the utilization of ILs in the biomedical field. It specifically emphasizes the diverse structures and properties of ILs with their relevance in various biomedical applications. Subsequently, we summarize the mechanisms of ILs as potential drug candidates, exploring their effects on various organisms ranging from cell membranes to organelles, proteins, and nucleic acids. Furthermore, the application of ILs as extractants and catalysts in pharmaceutical engineering is introduced. In addition, we thoroughly review and analyze the applications of ILs in disease diagnosis and delivery systems. By offering an extensive analysis of recent research, our objective is to inspire new ideas and pathways for the design of innovative biomedical technologies based on ILs.
Collapse
Affiliation(s)
- Yanhui Hu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuyuan Xing
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Yue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanyan Diao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wei
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Md Moshikur R, Goto M. Pharmaceutical Applications of Ionic Liquids: A Personal Account. CHEM REC 2023; 23:e202300026. [PMID: 37042429 DOI: 10.1002/tcr.202300026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/27/2023] [Indexed: 04/13/2023]
Abstract
Ionic liquids (ILs) have been extensively used in drug formulation and delivery as designer solvents and other components because of their inherent tunability and useful physicochemical and biopharmaceutical properties. ILs can be used to manage some of the operational and functional challenges of drug delivery, including drug solubility, permeability, formulation instability, and in vivo systemic toxicity, that are associated with conventional organic solvents/agents. Furthermore, ILs have been recognized as potential solvents to address the polymorphism, limited solubility, poor permeability, instability, and low bioavailability of crystalline drugs. In this account, we discuss the technological progress and strategies toward designing biocompatible ILs and explore potential biomedical applications, namely the solubilization of small and macromolecular drugs, the creation of active pharmaceutical ingredients, and the delivery of pharmaceuticals.
Collapse
Affiliation(s)
- Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Advanced Transdermal Drug Delivery System Center, Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
10
|
Moshikur RM, Carrier RL, Moniruzzaman M, Goto M. Recent Advances in Biocompatible Ionic Liquids in Drug Formulation and Delivery. Pharmaceutics 2023; 15:1179. [PMID: 37111664 PMCID: PMC10145603 DOI: 10.3390/pharmaceutics15041179] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The development of effective drug formulations and delivery systems for newly developed or marketed drug molecules remains a significant challenge. These drugs can exhibit polymorphic conversion, poor bioavailability, and systemic toxicity, and can be difficult to formulate with traditional organic solvents due to acute toxicity. Ionic liquids (ILs) are recognized as solvents that can improve the pharmacokinetic and pharmacodynamic properties of drugs. ILs can address the operational/functional challenges associated with traditional organic solvents. However, many ILs are non-biodegradable and inherently toxic, which is the most significant challenge in developing IL-based drug formulations and delivery systems. Biocompatible ILs comprising biocompatible cations and anions mainly derived from bio-renewable sources are considered a green alternative to both conventional ILs and organic/inorganic solvents. This review covers the technologies and strategies developed to design biocompatible ILs, focusing on the design of biocompatible IL-based drug formulations and delivery systems, and discusses the advantages of these ILs in pharmaceutical and biomedical applications. Furthermore, this review will provide guidance on transitioning to biocompatible ILs rather than commonly used toxic ILs and organic solvents in fields ranging from chemical synthesis to pharmaceutics.
Collapse
Affiliation(s)
- Rahman Md Moshikur
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Rebecca L. Carrier
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Hamadani CM, Mahdi F, Merrell A, Flanders J, Cao R, Vashisth P, Pride MC, Hunter AN, Singh G, Roman G, Paris JJ, Tanner EEL. Ionic Liquid Coating-Driven Nanoparticle Delivery to the Brain: Applications for NeuroHIV. RESEARCH SQUARE 2023:rs.3.rs-2574352. [PMID: 36824802 PMCID: PMC9949257 DOI: 10.21203/rs.3.rs-2574352/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Delivering cargo to the central nervous system (CNS) remains a pharmacological challenge. For infectious diseases such as HIV, the CNS acts as a latent reservoir that is inadequately managed by systemic antiretrovirals (ARTs). ARTs thus cannot eradicate HIV, and given CNS infection, patients experience an array of neurological deficits that are collectively referred to as 'neuroHIV'. Herein we report the development of bioinspired ionic liquid-coated nanoparticles (IL-NPs) for in situ hitchhiking on red blood cells (RBCs), which enabled 48% delivery of intravenously infused cargo to the brain. Moreover, the ionic liquid (IL) choline trans-2-hexenoate (CA2HA 1:2) demonstrated preferential accumulation in parenchymal microglia over endothelial cells post-delivery. We further demonstrate the successful loading of abacavir (ABC), an ART that is challenging to encapsulate, into the IL-coated NPs and verify the retention of antiviral efficacy in vitro. IL-NPs were not cytotoxic to primary human peripheral blood mononuclear cells (PBMCs) and the CA2HA 1:2 coating conferred notable anti-viremic capacity on its own. In addition, in vitro cell culture assays showed markedly increased uptake of IL-coated nanoparticles into neuronal cells compared to bare nanoparticles. This work debuts bioinspired ionic liquids as promising nanoparticle coatings to assist CNS biodistribution and has the potential to revolutionize the delivery of cargos (i.e., drugs, viral vectors) through compartmental barriers such as the blood-brain-barrier (BBB), illustrated in the graphical abstract below.
Collapse
|
12
|
Md Moshikur R, Shimul IM, Uddin S, Wakabayashi R, Moniruzzaman M, Goto M. Transformation of Hydrophilic Drug into Oil-Miscible Ionic Liquids for Transdermal Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55332-55341. [PMID: 36508194 DOI: 10.1021/acsami.2c15636] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The transdermal delivery of hydrophilic drugs remains challenging owing to their poor ability to permeate the skin; formulation with oil media is difficult without adding chemical permeation enhancers or co-solvents. Herein, we synthesized 12 oil-miscible ionic liquid (IL) drugs comprising lidocaine-, imipramine-, and levamisole (Lev)-hydrochloride with fatty acid permeation enhancers, i.e., laurate, oleate, linoleate, and stearate as counterions. A set of in vitro and in vivo studies was performed to investigate the potency and deliverability of the transdermal drug formulations. All of the synthesized compounds were freely miscible with pharmaceutically acceptable solvents/agents (i.e., ethanol, N-methyl pyrrolidone, Tween 20, and isopropyl myristate (IPM)). In vitro permeation studies revealed that the oleate-based Lev formulation had 2.6-fold higher skin permeation capability than the Lev salts and also superior ability compared with the laurate-, linoleate-, and stearate-containing samples. Upon in vivo transdermal administration to mice, the peak plasma concentration, elimination half-life, and area under the plasma concentration curve values of Lev-IL were 4.6-, 2.9-, and 5.4-fold higher, respectively, than those of the Lev salt. Furthermore, in vitro skin irritation and in vivo histological studies have demonstrated that Lev-IL has excellent biocompatibility compared with a conventional ionic liquid-based carrier. The results indicate that oil-miscible IL-based drugs provide a simple and scalable strategy for the design of effective transdermal drug delivery systems.
Collapse
Affiliation(s)
- Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Islam Md Shimul
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Shihab Uddin
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
13
|
Alcantara KP, Nalinratana N, Chutiwitoonchai N, Castillo AL, Banlunara W, Vajragupta O, Rojsitthisak P, Rojsitthisak P. Enhanced Nasal Deposition and Anti-Coronavirus Effect of Favipiravir-Loaded Mucoadhesive Chitosan-Alginate Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14122680. [PMID: 36559173 PMCID: PMC9782217 DOI: 10.3390/pharmaceutics14122680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Favipiravir (FVR) is a repurposed antiviral drug for treating mild to moderate cases of the novel coronavirus disease 2019 (COVID-19). However, its poor solubility and permeability limit its clinical efficacy. To overcome its physicochemical and pharmacokinetic limitations, we statistically designed a mucoadhesive chitosan-alginate nanoparticles (MCS-ALG-NPs) as a new carrier for FVR using response surface methodology, which provided suitable characteristics for transmucosal delivery. The use of mucoadhesive polymers for intranasal administration promotes the residence time and contact of FVR in the mucus membrane. The optimized FVR-MCS-ALG-NPs demonstrated superior mucoadhesion, higher permeation and deposition in the nasal mucosa, and a significant increase in the inhibition of viral replication over 35-fold compared with free FVR. The overall results suggest that MCS-ALG-NPs could be used as an effective mucoadhesive carrier to enhance the activity of FVR against COVID-19.
Collapse
Affiliation(s)
- Khent Primo Alcantara
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nonthaneth Nalinratana
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nopporn Chutiwitoonchai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Agnes L. Castillo
- Faculty of Pharmacy, The Graduate School, Research Center for the Natural and Applied Sciences (RCNAS), University of Santo Tomas, Manila 1008, Philippines
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2-218-8310
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Erşan T, Dilgin DG, Kumrulu E, Kumrulu U, Dilgin Y. Voltammetric Determination of Favipiravir Used as an Antiviral Drug for the Treatment of Covid-19 at Pencil Graphite Electrode. ELECTROANAL 2022; 35:ELAN202200295. [PMID: 36712592 PMCID: PMC9874810 DOI: 10.1002/elan.202200295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/21/2022] [Indexed: 02/01/2023]
Abstract
This work describes the sensitive voltammetric determination of favipiravir (FAV) based on its reduction for the first time with a low-cost and disposable pencil graphite electrode (PGE). In addition, the determination of FAV was also performed based on its oxidation. Differential pulse (DP) voltammograms recorded in 0.5 M H2SO4 for the reduction of FAV show that peak currents increase linearly in the range of 1.0 to 600.0 μM with a limit of detection of 0.35 μM. The acceptable recovery values (98.9-106.0 %) obtained from a pharmaceutical tablet, real human urine, and artificial blood serum samples spiked with FAV confirm the high accuracy of the proposed method.
Collapse
Affiliation(s)
- Teslime Erşan
- Faculty ScienceDepartment of ChemistryÇanakkale Onsekiz Mart University17100TurkeyÇanakkale
| | - Didem Giray Dilgin
- Department of Mathematics and Science EducationFaculty of EducationÇanakkale Onsekiz Mart UniversityÇanakkaleTurkey
| | - Elif Kumrulu
- POLİFARMA İlaç San. ve Tic. A.Ş.ErgeneTekirdağTurkey
| | - Umur Kumrulu
- POLİFARMA İlaç San. ve Tic. A.Ş.ErgeneTekirdağTurkey
| | - Yusuf Dilgin
- Faculty ScienceDepartment of ChemistryÇanakkale Onsekiz Mart University17100TurkeyÇanakkale
| |
Collapse
|
15
|
Defeat undefeatable: ionic liquids as novel antimicrobial agents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Biological activity, solvation properties and microstructuring of protic imidazolium ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Ali MK, Moshikur RM, Goto M, Moniruzzaman M. Recent Developments in Ionic Liquid-Assisted Topical and Transdermal Drug Delivery. Pharm Res 2022; 39:2335-2351. [PMID: 35773446 DOI: 10.1007/s11095-022-03322-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022]
Abstract
Ionic liquids (ILs) have attracted growing interest as designer solvents/materials for exploring unrealized functions in many areas of research including drug formulations and delivery owing to their inherent tunable physicochemical and biological properties. The use of ILs in the pharmaceutical industry can address challenges related to the use of conventional organic solvent-based chemical permeation enhancers. Their tunability in forming ion pairs with a diverse range of ions enables the task-specific optimization of ILs at the molecular level. In particular, ILs comprising second- and third-generation cations and anions have been extensively used to design biocompatible drug delivery systems to address the challenges related to conventional topical and transdermal drug delivery, including limited permeability, high cytotoxicity, and skin irritation. This review highlights the progress in IL-related research with particular emphasis on the very recent conceptual developments in transdermal drug delivery. Technological advancement and approaches for the formation of IL-based topical and transdermal delivery systems, as well as their promising application in drug delivery, are also discussed.
Collapse
Affiliation(s)
- Md Korban Ali
- Department of Chemistry, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Muhammad Moniruzzaman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
- Center for Research in Ionic Liquids, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| |
Collapse
|
18
|
|
19
|
Sajadian SA, Ardestani NS, Esfandiari N, Askarizadeh M, Jouyban A. Solubility of favipiravir (as an anti-COVID-19) in supercritical carbon dioxide: An experimental analysis and thermodynamic modeling. J Supercrit Fluids 2022; 183:105539. [PMID: 35136283 PMCID: PMC8815272 DOI: 10.1016/j.supflu.2022.105539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
Abstract
Favipiravir is one of the most commonly prescribed drugs in the treatment of COVID-19 in the early stages of the disease. In this work, the solubility of favipiravir was measured in supercritical CO2 at temperatures ranging from 308 to 338 K and pressures ranging from 12 to 30 MPa. The mole fraction solubility of favipiravir was in the range of 3.0 × 10-6 to 9.05 × 10-4. The solubility data were correlated with three types of methods including; (a) density-based models (Chrastil, Garlapati and Madras, Sparks et al., Sodeifian et al., K-J and Keshmiri et al.), (b) Equations of states SRK with quadratic mixing rules) and (c) expanded liquid theory (modified Wilson model). According to the results, modified Wilson and K-J models are generally capable of providing good correlation of solubility. Finally, the approximate values of total (Δ H total ), vaporization (Δ H vap ), and solvation (Δ H sol ) enthalpies were computed.
Collapse
Affiliation(s)
- Seyed Ali Sajadian
- South Zagros Oil and Gas Production, National Iranian Oil Company, 7135717991 Shiraz, Iran
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, 87317-53153 Kashan, Iran
| | - Nedasadat Saadati Ardestani
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, 14155-4777 Karaj, Iran
| | - Nadia Esfandiari
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Mahshid Askarizadeh
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, PO BOX: 99138, Mersin 10, Nicosia, North Cyprus,Turkey
| |
Collapse
|
20
|
Konstantinova ID, L.Andronova V, Fateev IV, Esipov RS. Favipiravir and Its Structural Analogs: Antiviral Activity and Synthesis Methods. Acta Naturae 2022; 14:16-38. [PMID: 35923566 PMCID: PMC9307979 DOI: 10.32607/actanaturae.11652] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/27/2022] [Indexed: 01/18/2023] Open
Abstract
1,4-Pyrazine-3-carboxamide-based antiviral compounds have been under intensive study for the last 20 years. One of these compounds, favipiravir (6-fluoro-3-hydroxypyrazine-2-carboxamide, T-705), is approved for use against the influenza infection in a number of countries. Now, favipiravir is being actively used against COVID-19. This review describes the in vivo metabolism of favipiravir, the mechanism of its antiviral activity, clinical findings, toxic properties, and the chemical synthesis routes for its production. We provide data on the synthesis and antiviral activity of structural analogs of favipiravir, including nucleosides and nucleotides based on them.
Collapse
Affiliation(s)
- I. D. Konstantinova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - V. L.Andronova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia, Moscow, 123098 Russia
| | - I. V. Fateev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - R. S. Esipov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
21
|
Second-Order Scattering Quenching in Fluorescence Spectra of Natural Humates as a Tracer of Formation Stable Supramolecular System for the Delivery of Poorly Soluble Antiviral Drugs on the Example of Mangiferin and Favipiravir. Pharmaceutics 2022; 14:pharmaceutics14040767. [PMID: 35456601 PMCID: PMC9030643 DOI: 10.3390/pharmaceutics14040767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/04/2022] Open
Abstract
In the present work, the methods of dynamic light scattering and fluorescence spectroscopy were applied to study the optical properties of aqueous dilutions of the humic substances complex (HC) as a potential drug delivery system. The supramolecular structures in the humate solution were characterized as monodisperse systems of the submicron range with a tendency to decrease in particle size with a decrease in the dry matter concentration. The slightly alkaline medium (8.3) of the studied aqueous dilutions of HC causes the absence of a pronounced fluorescence maximum in the region from 400 to 500 nm. However, the presence of an analytically significant, inversely proportional to the concentration second-order scattering (SOS) signal at 2λex = λem was shown. In the examples of the antiviral substances mangiferin and favipiravir, it was shown that the use of the humic complex as a drug carrier makes it possible to increase the solubility by several times and simultaneously obtain a system with a smaller particle size of the dispersed phase. It has been shown that HC can interact with mangiferin and favipiravir to form stable structures, which lead to a significant decrease in SOS intensities on HC SOS spectra. The scattering wavelengths, λex/λem, were registered at 350 nm/750 nm for mangiferin and 365 nm/730 nm for favipiravir, respectively. The increments of the scattering intensities (I0/I) turned out to be proportional to the concentration of antiviral components in a certain range of concentrations.
Collapse
|
22
|
Ghaed-Sharaf T, Omidvar A. Exploring the permeability of covid-19 drugs within the cellular membrane: a molecular dynamics simulation study. Phys Chem Chem Phys 2022; 24:6215-6224. [PMID: 35229833 DOI: 10.1039/d1cp05550j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The diffusion of drugs into the cellular membrane is an important step in the drug delivery systems. Furthermore, predicting the interaction and permeability of drugs across the cellular membrane could help scientists to design bioavailable and high-efficient drugs. Discovering the COVID-19 drugs has recently drawn remarkable attention to tackle its outbreak. Due to the rapid replication of the coronavirus in the human body, searching for highly permeable drugs into the cellular membrane is vital. Herein, we performed the molecular dynamics (MD) simulation and density functional (DFT) calculations to investigate the permeability of keto and enol tautomers of the favipiravir (FAV) as well as hydroxychloroquine (HCQ) COVID-19 drugs into the cellular membrane. Our results reveal that though both keto and enol tautomers of the FAV are feasible to transfer through the cellular membrane, the keto form moves faster and diffuses deeper; however, the HCQ molecules aggregate in the water phase and remain near the cellular membrane. It is worth pointing out that the obtained results are consistent with the reactivity trends projected by the calculated reactivity descriptors of the considered drugs. Despite the pair correlation function and H-bond analyses revealing the interactions between the membrane and HCQ, the aggregation of the HCQ molecules resists their passage through the cellular membrane. Besides, the lower free energy barrier of FAV confirms its higher permeability than HCQ. These findings suggest that due to the deeper permeability of the FAV drug, its effectiveness can be more than that of HCQ. These molecular insights might help with a better understanding of the interactions between COVID-19 drugs and cellular membranes. Moreover, these theoretical findings could help experimental researchers find high-efficient strategies for COVID-19 therapy.
Collapse
Affiliation(s)
- Tahereh Ghaed-Sharaf
- Faculty of Chemistry, Department of Physical Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Akbar Omidvar
- Faculty of Chemistry, Department of Physical Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| |
Collapse
|
23
|
Baruah P, Ray D, Konthoujam I, Das A, Chakrabarty S, Aguan K, Mitra S. Therapeutic opportunities of surface-active ionic liquids: a case study on acetylcholinesterase, citrate synthase and HeLa cell lines. NEW J CHEM 2022. [DOI: 10.1039/d2nj04365c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In concurrence with the pursuit of clean and green medium, recent years have witnessed an unprecedented rise in the usage of ionic liquids (ILs).
Collapse
Affiliation(s)
- Prayasee Baruah
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Dhiman Ray
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Ibemhanbi Konthoujam
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793 022, India
| | - Abhinandan Das
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Suman Chakrabarty
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Kripamoy Aguan
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793 022, India
| | - Sivaprasad Mitra
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| |
Collapse
|
24
|
Wang Z, Yang L. Broad-spectrum prodrugs with anti-SARS-CoV-2 activities: Strategies, benefits, and challenges. J Med Virol 2021; 94:1373-1390. [PMID: 34897729 DOI: 10.1002/jmv.27517] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/18/2023]
Abstract
In this era, broad-spectrum prodrugs with anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activities are gaining considerable attention owing to their potential clinical benefits and role in combating the fast-spreading coronavirus disease 2019 (COVID-19) pandemic. The last 2 years have seen a surge of reports on various broad-spectrum prodrugs against SARS-CoV-2, and in in vitro studies, animal models, and clinical practice. Currently, only remdesivir (with many controversies and limitations) has been approved by the U.S. FDA for the treatment of SARS-CoV-2 infection, and additional potent anti-SARS-CoV-2 drugs are urgently required to enrich the defense arsenals. The world has ubiquitously grappled with the COVID-19 pandemic, and the availability of broad-spectrum prodrugs provides great hope for us to subdue this global threat. This article reviews promising treatment strategies, antiviral mechanisms, potential benefits, and daunting clinical challenges of anti-SARS-CoV-2 agents to provide some important guidance for future clinical treatment.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, P. R. China.,Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Tsinghua University, Beijing, P. R. China
| | - Liyan Yang
- Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, P. R. China
| |
Collapse
|