1
|
Guo H, Mi P. Polymer-drug and polymer-protein conjugated nanocarriers: Design, drug delivery, imaging, therapy, and clinical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1988. [PMID: 39109479 DOI: 10.1002/wnan.1988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 01/06/2025]
Abstract
Polymer-drug conjugates and polymer-protein conjugates have been pivotal in the realm of drug delivery systems for over half a century. These polymeric drugs are characterized by the conjugation of therapeutic molecules or functional moieties to polymers, enabling a range of benefits including extended circulation times, targeted delivery, controlled release, and decreased immunogenicity. This review delves into recent advancements and challenges in the clinical translations and preclinical studies of polymer-drug conjugates and polymer-protein conjugates. The design principles and functionalization strategies crucial for the development of these polymeric drugs were explored followed by the review of structural properties and characteristics of various polymer carriers. This review also identifies significant obstacles in the clinical translation of polymer-drug conjugates and provides insights into the directions for their future development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Haochen Guo
- Department of Radiology, Huaxi MR Research Center (HMRRC), and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Sreenivasan S, Rathore AS. Combined Presence of Ferrous Ions and Hydrogen Peroxide in Normal Saline and In Vitro Models Induces Enhanced Aggregation of Therapeutic IgG due to Hydroxyl Radicals. Mol Pharm 2023. [PMID: 37189260 DOI: 10.1021/acs.molpharmaceut.3c00051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Therapeutic monoclonal antibodies (mAb) are known to form aggregates and fragments upon exposure to hydrogen peroxide (H2O2) and ferrous ions (Fe2+). H2O2 and Fe2+ react to form hydroxyl radicals that are detrimental to protein structures. In this study, aggregation of mAb in the combined presence of Fe2+ and H2O2 was investigated in saline and physiologically relevant in vitro models. In the first case study, forced degradation of mAb in saline (a fluid used for administration of mAb) was carried out at 55 °C in the combined presence of 0.2 mM Fe2+ and 0.1% H2O2. The control and stressed samples were analyzed using an array of techniques including visual observation, size-exclusion chromatography (SEC), dynamic light scattering (DLS), microscopy, UV-vis, fluorescence, Fourier transform infrared spectroscopy, and cell-based toxicity assays. At the end of 1 h, samples having the combined presence of both Fe2+ and H2O2 exhibited more than 20% HMW (high molecular weight species), whereas samples having only Fe2+, H2O2, or neither resulted in less than 3% HMW. Aggregate-rich samples also exhibited altered protein structures and hydrophobicity. Aggregation increased upon increasing the time, temperature, and concentration of Fe2+ and H2O2. Samples having both Fe2+ and H2O2 also showed higher cytotoxicity in red blood cells. Samples of mAb with chlorides of copper and cobalt with H2O2 also resulted in multifold degradation. The first case study showed enhanced aggregation of mAb in the combined presence of Fe2+ and H2O2 in saline. In the second case study, aggregation of mAb was investigated in artificially prepared extracellular saline and in vitro models such as macromolecule free fraction of serum and serum. In the presence of both Fe2+ and H2O2, %HMW was higher in extracellular saline compared to macromolecule free fraction of serum. Further, in vitro models having the combined presence of Fe2+ and H2O2 resulted in enhanced aggregation of mAb compared to models that had neither.
Collapse
Affiliation(s)
- Shravan Sreenivasan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
3
|
Nomoto T, Komoto K, Nagano T, Ishii T, Guo H, Honda Y, Ogura SI, Ishizuka M, Nishiyama N. Polymeric iron chelators for enhancing 5-aminolevulinic acid-induced photodynamic therapy. Cancer Sci 2023; 114:1086-1094. [PMID: 36341512 PMCID: PMC9986068 DOI: 10.1111/cas.15637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is an amino acid that can be metabolized into a photosensitizer, protoporphyrin IX (PpIX) selectively in a tumor cell, permitting minimally invasive photodynamic diagnosis/therapy. However, some malignant tumor cells have excess intracellular labile iron and facilitate the conversion of PpIX into heme, which compromises the therapeutic potency of 5-ALA. Here, we examined the potential of chelation of such unfavorable intratumoral labile iron in photodynamic therapy (PDT) with 5-ALA hydrochloride, using polymeric iron chelators that we recently developed. The polymeric iron chelator efficiently inactivated the intracellular labile iron in cultured cancer cells and importantly enhanced the accumulation of PpIX, thereby improving the cytotoxicity upon photoirradiation. Even in in vivo study with subcutaneous tumor models, the polymeric iron chelator augmented the intratumoral accumulation of PpIX and the PDT effect. This study suggests that our polymeric iron chelator could be a tool for boosting the effect of 5-ALA-induced PDT by modulating tumor microenvironment.
Collapse
Affiliation(s)
- Takahiro Nomoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.,Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kana Komoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.,Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | - Haochen Guo
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.,Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuto Honda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.,Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shun-Ichiro Ogura
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.,Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| |
Collapse
|
4
|
Xu L, Guan R, Yu B, Li Y, Liu H, Jiang Y. Fluorene methoxycarbonyl-PEG-deferoxamine conjugates "hitchhike" with albumin in situ for iron overload therapy. Int J Pharm 2022; 625:122136. [PMID: 36029994 DOI: 10.1016/j.ijpharm.2022.122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
Although deferoxamine (DFO) has been approved for the treatment the iron overloaded diseases, its clinical application is impeded by very short circulation time and its relating toxicity. In this work, the fluorene methoxycarbonyl (FMOC) for "albumin hitchhiking" was used to prolong the plasma circulation time of DFO and reduce toxicity. The designed FMOC-PEG-DFO conjugates were found to reversible bind to albumin and gradually release DFO in vivo. Herein, the FMOC-PEG1000-DFO conjugates could increase 30 times the blood circulation time of DFO with the improvement of the iron elimination efficacy. Meanwhile, the conjugates markedly reduced the cytotoxicity of DFO. Taken together, the result demonstrated the FMOC-PEG1000-DFO conjugates could be a potential therapeutic choice for iron-overload-related diseases.
Collapse
Affiliation(s)
- Linyi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Rou Guan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Bohong Yu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Yicheng Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongzhuo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yiguo Jiang
- Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou 215153, China.
| |
Collapse
|