1
|
Willis LF, Kapur N, Radford SE, Brockwell DJ. Biophysical Analysis of Therapeutic Antibodies in the Early Development Pipeline. Biologics 2024; 18:413-432. [PMID: 39723199 PMCID: PMC11669289 DOI: 10.2147/btt.s486345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
The successful progression of therapeutic antibodies and other biologics from the laboratory to the clinic depends on their possession of "drug-like" biophysical properties. The techniques and the resultant biophysical and biochemical parameters used to characterize their ease of manufacture can be broadly defined as developability. Focusing on antibodies, this review firstly discusses established and emerging biophysical techniques used to probe the early-stage developability of biologics, aimed towards those new to the field. Secondly, we describe the inter-relationships and redundancies amongst developability assays and how in silico methods aid the efficient deployment of developability to bring a new generation of cost-effective therapeutic proteins from bench to bedside more quickly and sustainably.
Collapse
Affiliation(s)
- Leon F Willis
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nikil Kapur
- School of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
2
|
Pandya A, Zhang C, Barata TS, Brocchini S, Howard MJ, Zloh M, Dalby PA. Molecular Dynamics Simulations Reveal How Competing Protein-Surface Interactions for Glycine, Citrate, and Water Modulate Stability in Antibody Fragment Formulations. Mol Pharm 2024; 21:5497-5509. [PMID: 39431440 PMCID: PMC11539065 DOI: 10.1021/acs.molpharmaceut.4c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024]
Abstract
The design of stable formulations remains a major challenge for protein therapeutics, particularly the need to minimize aggregation. Experimental formulation screens are typically based on thermal transition midpoints (Tm), and forced degradation studies at elevated temperatures. Both approaches give limited predictions of long-term storage stability, particularly at low temperatures. Better understanding of the mechanisms of action for formulation of excipients and buffers could lead to improved strategies for formulation design. Here, we identified a complex impact of glycine concentration on the experimentally determined stability of an antibody Fab fragment and then used molecular dynamics simulations to reveal mechanisms that underpin these complex behaviors. Tm values increased monotonically with glycine concentration, but associated ΔSvh measurements revealed more complex changes in the native ensemble dynamics, which reached a maximum at 30 mg/mL. The aggregation kinetics at 65 °C were similar at 0 and 20 mg/mL glycine, but then significantly slower at 50 mg/mL. These complex behaviors indicated changes in the dominant stabilizing mechanisms as the glycine concentration was increased. MD revealed a complex balance of glycine self-interaction, and differentially preferred interactions of glycine with the Fab as it displaced hydration-shell water, and surface-bound water and citrate buffer molecules. As a result, glycine binding to the Fab surface had different effects at different concentrations, and led from preferential interactions at low concentrations to preferential exclusion at higher concentrations. During preferential interaction, glycine displaced water from the Fab hydration shell, and a small number of water and citrate molecules from the Fab surface, which reduced the protein dynamics as measured by root-mean-square fluctuation (RMSF) on the short time scales of MD. By contrast, the native ensemble dynamics increased according to ΔSvh, suggesting increased conformational changes on longer time scales. The aggregation kinetics did not change at low glycine concentrations, and so the opposing dynamics effects either canceled out or were not directly relevant to aggregation. During preferential exclusion at higher glycine concentrations, glycine could only bind to the Fab surface through the displacement of citrate buffer molecules already favorably bound on the Fab surface. Displacement of citrate increased the flexibility (RMSF) of the Fab, as glycine formed fewer bridging hydrogen bonds to the Fab surface. Overall, the slowing of aggregation kinetics coincided with reduced flexibility in the Fab ensemble at the very highest glycine concentrations, as determined by both RMSF and ΔSvh, and occurred at a point where glycine binding displaced neither water nor citrate. These final interactions with the Fab surface were driven by mass action and were the least favorable, leading to a macromolecular crowding effect under the regime of preferential exclusion that stabilized the dynamics of Fab.
Collapse
Affiliation(s)
- Akash Pandya
- Department
of Biochemical Engineering, University College
London, Gower Street, London WC1E
6BT, U.K.
| | - Cheng Zhang
- Department
of Biochemical Engineering, University College
London, Gower Street, London WC1E
6BT, U.K.
| | - Teresa S. Barata
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Steve Brocchini
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Mark J. Howard
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Mire Zloh
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Paul A. Dalby
- Department
of Biochemical Engineering, University College
London, Gower Street, London WC1E
6BT, U.K.
| |
Collapse
|
3
|
Ullrich T, Klimenkova O, Pollmann C, Lasram A, Hatskovska V, Maksymenko K, Milijaš-Jotić M, Schenk L, Lengerke C, Hartmann MD, Piehler J, Skokowa J, ElGamacy M. A strategy to design protein-based antagonists against type I cytokine receptors. PLoS Biol 2024; 22:e3002883. [PMID: 39591631 PMCID: PMC11596305 DOI: 10.1371/journal.pbio.3002883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/06/2024] [Indexed: 11/28/2024] Open
Abstract
Excessive cytokine signaling resulting from dysregulation of a cytokine or its receptor can be a main driver of cancer, autoimmune, or hematopoietic disorders. Here, we leverage protein design to create tailored cytokine receptor blockers with idealized properties. Specifically, we aimed to tackle the granulocyte-colony stimulating factor receptor (G-CSFR), a mediator of different types of leukemia and autoinflammatory diseases. By modifying designed G-CSFR binders, we engineered hyper-stable proteins that function as nanomolar signaling antagonists. X-ray crystallography showed atomic-level agreement with the experimental structure of an exemplary design. Furthermore, the most potent design blocks G-CSFR in acute myeloid leukemia cells and primary human hematopoietic stem cells. Thus, the resulting designs can be used for inhibiting or homing to G-CSFR-expressing cells. Our results also demonstrate that similarly designed cytokine mimics can be used to derive antagonists to tackle other type I cytokine receptors.
Collapse
Affiliation(s)
- Timo Ullrich
- Max Planck Institute for Biology, Department of Protein Evolution, Tübingen, Germany
| | - Olga Klimenkova
- Translational Oncology, Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Christoph Pollmann
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Asma Lasram
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Valeriia Hatskovska
- Max Planck Institute for Biology, Department of Protein Evolution, Tübingen, Germany
- Translational Oncology, Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Kateryna Maksymenko
- Max Planck Institute for Biology, Department of Protein Evolution, Tübingen, Germany
| | - Matej Milijaš-Jotić
- Max Planck Institute for Biology, Department of Protein Evolution, Tübingen, Germany
| | - Lukas Schenk
- Translational Oncology, Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Claudia Lengerke
- Translational Oncology, Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Marcus D. Hartmann
- Max Planck Institute for Biology, Department of Protein Evolution, Tübingen, Germany
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Julia Skokowa
- Translational Oncology, Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Mohammad ElGamacy
- Max Planck Institute for Biology, Department of Protein Evolution, Tübingen, Germany
- Translational Oncology, Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Wood V, Kellerman MA, Groves K, Quaglia M, Topp EM, Matejtschuk P, Dalby PA. Investigation of the Solid-State Interactions in Lyophilized Human G-CSF Using Hydrogen-Deuterium Exchange Mass Spectrometry. Mol Pharm 2024; 21:1965-1976. [PMID: 38516985 PMCID: PMC10988552 DOI: 10.1021/acs.molpharmaceut.3c01211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) previously elucidated the interactions between excipients and proteins for liquid granulocyte colony stimulating factor (G-CSF) formulations, confirming predictions made using computational structure docking. More recently, solid-state HDX mass spectrometry (ssHDX-MS) was developed for proteins in the lyophilized state. Deuterium uptake in ssHDX-MS has been shown for various proteins, including monoclonal antibodies, to be highly correlated with storage stability, as measured by protein aggregation and chemical degradation. As G-CSF is known to lose activity through aggregation upon lyophilization, we applied the ssHDX-MS method with peptide mapping to four different lyophilized formulations of G-CSF to compare the impact of three excipients on local structure and exchange dynamics. HDX at 22 °C was confirmed to correlate well with the monomer content remaining after lyophilization and storage at -20 °C, with sucrose providing the greatest protection, and then phenylalanine, mannitol, and no excipient leading to progressively less protection. Storage at 45 °C led to little difference in final monomer content among the formulations, and so there was no discernible relationship with total deuterium uptake on ssHDX. Incubation at 45 °C may have led to a structural conformation and/or aggregation mechanism no longer probed by HDX at 22 °C. Such a conformational change was observed previously at 37 °C for liquid-formulated G-CSF using NMR. Peptide mapping revealed that tolerance to lyophilization and -20 °C storage was linked to increased stability in the small helix, loop AB, helix C, and loop CD. LC-MS HDX and NMR had previously linked loop AB and loop CD to the formation of a native-like state (N*) prior to aggregation in liquid formulations, suggesting a similar structural basis for G-CSF aggregation in the liquid and solid states.
Collapse
Affiliation(s)
- Victoria
E. Wood
- Department
of Biochemical Engineering, University College
London, London WC1E 6BT, United
Kingdom
| | - Mark-Adam Kellerman
- Department
of Biochemical Engineering, University College
London, London WC1E 6BT, United
Kingdom
| | - Kate Groves
- LGC, Queens Road, Teddington, Middlesex TQ11 0LY, United Kingdom
| | - Milena Quaglia
- LGC, Queens Road, Teddington, Middlesex TQ11 0LY, United Kingdom
| | - Elizabeth M. Topp
- Department
of Industrial and Molecular Pharmaceutics, College of Pharmacy, and
Davidson School of Chemical Engineering, College of Engineering Purdue University, West Lafayette, Indiana 47907, United States
| | - Paul Matejtschuk
- Standardisation
Science, NIBSC, Medicines & Healthcare
Products Regulatory Agency, South Mimms, Hertfordshire EN6 3QG, United
Kingdom
| | - Paul A. Dalby
- Department
of Biochemical Engineering, University College
London, London WC1E 6BT, United
Kingdom
| |
Collapse
|
5
|
Tao Y, Chen Y, Howard W, Ibrahim M, Patel SM, McMahon WP, Kim YJ, Delmar JA, Davis D. Mechanism of Insoluble Aggregate Formation in a Reconstituted Solution of Spray-Dried Protein Powder. Pharm Res 2023; 40:2355-2370. [PMID: 37131104 PMCID: PMC10661820 DOI: 10.1007/s11095-023-03524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Spray-drying is considered a promising alternative drying method to lyophilization (freeze-drying) for therapeutic proteins. Particle counts in reconstituted solutions of dried solid dosage forms of biologic drug products are closely monitored to ensure product quality. We found that high levels of particles formed after reconstitution of protein powders that had been spray-dried under suboptimal conditions. METHODS Visible and subvisible particles were evaluated. Soluble proteins in solution before spray-drying and in the reconstituted solution of spray-dried powder were analyzed for their monomer content levels and melting temperatures. Insoluble particles were collected and analyzed by Fourier transform infrared microscopy (FTIR), and further analyzed with hydrogen-deuterium exchange (HDX). RESULTS Particles observed after reconstitution were shown not to be undissolved excipients. FTIR confirmed their identity as proteinaceous in nature. These particles were therefore considered to be insoluble protein aggregates, and HDX was applied to investigate the mechanism underlying aggregate formation. Heavy-chain complementarity-determining region 1 (CDR-1) in the aggregates showed significant protection by HDX, suggesting CDR-1 was critical for aggregate formation. In contrast, various regions became more conformationally dynamic globally, suggesting the aggregates have lost protein structural integrity and partially unfolded after spray-drying. DISCUSSION The spray-drying process could have disrupted the higher-order structure of proteins and exposed the hydrophobic residues in CDR-1 of the heavy chain, contributing to the formation of aggregate through hydrophobic interactions upon reconstitution of spray-dried powder. These results can contribute to efforts to design spray-dry resilient protein constructs and improve the robustness of the spray-drying process.
Collapse
Affiliation(s)
- Yeqing Tao
- Process and Analytical Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, 20787, USA.
| | - Yuan Chen
- Dosage Form Design & Development, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Wesley Howard
- Process and Analytical Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, 20787, USA
| | - Mariam Ibrahim
- Dosage Form Design & Development, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Sajal M Patel
- Dosage Form Design & Development, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - William P McMahon
- Process and Analytical Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, 20787, USA
| | - Yoen Joo Kim
- Process and Analytical Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, 20787, USA
| | - Jared A Delmar
- Process and Analytical Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, 20787, USA
| | - Darryl Davis
- Process and Analytical Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, 20787, USA
| |
Collapse
|
6
|
Kellerman MAW, Almeida T, Rudd TR, Matejtschuk P, Dalby PA. NMR Reveals Functionally Relevant Thermally Induced Structural Changes within the Native Ensemble of G-CSF. Mol Pharm 2022; 19:3242-3255. [PMID: 35948076 PMCID: PMC9449972 DOI: 10.1021/acs.molpharmaceut.2c00398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Structure–function relationships in proteins refer
to a
trade-off between stability and bioactivity, molded by evolution of
the molecule. Identifying which protein amino acid residues jeopardize
global or local stability for the benefit of bioactivity would reveal
residues pivotal to this structure–function trade-off. Here,
we use 15N–1H heteronuclear single quantum
coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy to
probe the microenvironment and dynamics of residues in granulocyte
colony-stimulating factor (G-CSF) through thermal perturbation. From
this analysis, we identified four residues (G4, A6, T133, and Q134)
that we classed as significant to global stability, given that they
all experienced large environmental and dynamic changes and were closely
correlated to each other in their NMR characteristics. Additionally,
we observe that roughly four structural clusters are subject to localized
conformational changes or partial unfolding prior to global unfolding
at higher temperature. Combining NMR observables with structure relaxation
methods reveals that these structural clusters concentrate around
loop AB (binding site III inclusive). This loop has been previously
implicated in conformational changes that result in an aggregation
prone state of G-CSF. Residues H43, V48, and S63 appear to be pivotal
to an opening motion of loop AB, a change that is possibly also important
for function. Hence, we present here an approach to profiling residues
in order to highlight their potential roles in the two vital characteristics
of proteins: stability and bioactivity.
Collapse
Affiliation(s)
- Mark-Adam W Kellerman
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Teresa Almeida
- Medicines & Healthcare Products Regulatory Agency, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Timothy R Rudd
- Medicines & Healthcare Products Regulatory Agency, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.,Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, United Kingdom
| | - Paul Matejtschuk
- Medicines & Healthcare Products Regulatory Agency, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Paul A Dalby
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|