1
|
Haley RM, Padilla MS, El-Mayta RD, Joseph RA, Weber JA, Figueroa-Espada CG, Mukalel AJ, Ricciardi AS, Palanki R, Geisler HC, Jester MT, Davidson BL, Mitchell MJ. Lipid Nanoparticles for In Vivo Lung Delivery of CRISPR-Cas9 Ribonucleoproteins Allow Gene Editing of Clinical Targets. ACS NANO 2025; 19:13790-13804. [PMID: 40183470 DOI: 10.1021/acsnano.4c16617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
In the past 10 years, CRISPR-Cas9 has revolutionized the gene-editing field due to its modularity, simplicity, and efficacy. It has been applied for the creation of in vivo models, to further understand human biology, and toward the curing of genetic diseases. However, there remain significant delivery barriers for CRISPR-Cas9 application in the clinic, especially for in vivo and extrahepatic applications. In this work, high-throughput molecular barcoding techniques were used alongside traditional screening methodologies to simultaneously evaluate LNP formulations encapsulating ribonucleoproteins (RNPs) for in vitro gene-editing efficiency and in vivo biodistribution. This resulted in the identification of a lung-tropic LNP formulation, which shows efficient gene editing in endothelial and epithelial cells within the lung, targeting both model reporter and clinically relevant genomic targets. Further, this LNP shows no off-target indel formation in the liver, making it a highly specific extrahepatic delivery system for lung-editing applications.
Collapse
Affiliation(s)
- Rebecca M Haley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marshall S Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rakan D El-Mayta
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ryann A Joseph
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jesse A Weber
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Alvin J Mukalel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Adele S Ricciardi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rohan Palanki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hannah C Geisler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Matthew T Jester
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Whitfield JR, Soucek L. MYC in cancer: from undruggable target to clinical trials. Nat Rev Drug Discov 2025:10.1038/s41573-025-01143-2. [PMID: 39972241 DOI: 10.1038/s41573-025-01143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2025] [Indexed: 02/21/2025]
Abstract
MYC is among the most infamous oncogenes in cancer. A notable feature that distinguishes it from other common oncogenes is that its deregulation is not usually due to direct mutation, but instead to its relentless activation by other oncogenic lesions. These signalling pathways funnel through MYC to execute the transcriptional programmes that eventually lead to the uncontrolled proliferation of cancer cells. Indeed, deregulated MYC activity may be linked to most - if not all - human cancers. Despite this unquestionable role of MYC in tumour development and maintenance, no MYC inhibitor has yet been approved for clinical use. The main reason is that MYC has long fallen into the category of 'undruggable' or 'difficult-to-drug' targets, mainly because of its intrinsically disordered structure, which is not amenable to traditional drug development strategies. However, in recent years, attempts to develop MYC inhibitors have multiplied, and the first clinical trials have been testing their efficacy in patients. We are finally reaching the point at which its inhibition seems clinically viable. This Review provides an overview of the various strategies to inhibit MYC, focusing on the most recently described inhibitors and those that have reached clinical trials.
Collapse
Affiliation(s)
- Jonathan R Whitfield
- Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain.
- Peptomyc S.L., Barcelona, Spain.
| |
Collapse
|
3
|
Chan A, Haley RM, Najar MA, Gonzalez-Martinez D, Bugaj LJ, Burslem GM, Mitchell MJ, Tsourkas A. Lipid-mediated intracellular delivery of recombinant bioPROTACs for the rapid degradation of undruggable proteins. Nat Commun 2024; 15:5808. [PMID: 38987546 PMCID: PMC11237011 DOI: 10.1038/s41467-024-50235-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
Recently, targeted degradation has emerged as a powerful therapeutic modality. Relying on "event-driven" pharmacology, proteolysis targeting chimeras (PROTACs) can degrade targets and are superior to conventional inhibitors against undruggable proteins. Unfortunately, PROTAC discovery is limited by warhead scarcity and laborious optimization campaigns. To address these shortcomings, analogous protein-based heterobifunctional degraders, known as bioPROTACs, have been developed. Compared to small-molecule PROTACs, bioPROTACs have higher success rates and are subject to fewer design constraints. However, the membrane impermeability of proteins severely restricts bioPROTAC deployment as a generalized therapeutic modality. Here, we present an engineered bioPROTAC template able to complex with cationic and ionizable lipids via electrostatic interactions for cytosolic delivery. When delivered by biocompatible lipid nanoparticles, these modified bioPROTACs can rapidly degrade intracellular proteins, exhibiting near-complete elimination (up to 95% clearance) of targets within hours of treatment. Our bioPROTAC format can degrade proteins localized to various subcellular compartments including the mitochondria, nucleus, cytosol, and membrane. Moreover, substrate specificity can be easily reprogrammed, allowing modular design and targeting of clinically-relevant proteins such as Ras, Jnk, and Erk. In summary, this work introduces an inexpensive, flexible, and scalable platform for efficient intracellular degradation of proteins that may elude chemical inhibition.
Collapse
Affiliation(s)
- Alexander Chan
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca M Haley
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohd Altaf Najar
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Gonzalez-Martinez
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Mitchell
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Tsourkas
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Atsavapranee E, Haley RM, Billingsley MM, Chan A, Ruan B, Figueroa-Espada CG, Gong N, Mukalel AJ, Bryan PN, Mitchell MJ. Ionizable lipid nanoparticles for RAS protease delivery to inhibit cancer cell proliferation. J Control Release 2024; 370:614-625. [PMID: 38729436 PMCID: PMC11210981 DOI: 10.1016/j.jconrel.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Mutations in RAS, a family of proteins found in all human cells, drive a third of cancers, including many pancreatic, colorectal, and lung cancers. However, there is a lack of clinical therapies that can effectively prevent RAS from causing tumor growth. Recently, a protease was engineered that specifically degrades active RAS, offering a promising new tool for treating these cancers. However, like many other intracellularly acting protein-based therapies, this protease requires a delivery vector to reach its site of action within the cell. In this study, we explored the incorporation of cationic lipids into ionizable lipid nanoparticles (LNPs) to develop a RAS protease delivery platform capable of inhibiting cancer cell proliferation in vitro and in vivo. A library of 13 LNPs encapsulating RAS protease was designed, and each formulation was evaluated for in vitro delivery efficiency and toxicity. A subset of four top-performing LNP formulations was identified and further evaluated for their impact on cancer cell proliferation in human colorectal cancer cells with mutated KRAS in vitro and in vivo, as well as their in vivo biodistribution and toxicity. In vivo, both the concentration of cationic lipid and type of cargo influenced LNP and cargo distribution. All lead candidate LNPs showed RAS protease functionality in vitro, and the top-performing formulation achieved effective intracellular RAS protease delivery in vivo, decreasing cancer cell proliferation in an in vivo xenograft model and significantly reducing tumor growth and size. Overall, this work demonstrates the use of LNPs as an effective delivery platform for RAS proteases, which could potentially be utilized for cancer therapies.
Collapse
Affiliation(s)
- Ella Atsavapranee
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca M Haley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Alexander Chan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Biao Ruan
- Potomac Affinity Proteins, LLC, North Potomac, MD 20878, USA
| | | | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alvin J Mukalel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Philip N Bryan
- Potomac Affinity Proteins, LLC, North Potomac, MD 20878, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Im SH, Jang M, Park JH, Chung HJ. Finely tuned ionizable lipid nanoparticles for CRISPR/Cas9 ribonucleoprotein delivery and gene editing. J Nanobiotechnology 2024; 22:175. [PMID: 38609947 PMCID: PMC11015636 DOI: 10.1186/s12951-024-02427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Nonviral delivery of the CRISPR/Cas9 system provides great benefits for in vivo gene therapy due to the low risk of side effects. However, in vivo gene editing by delivering the Cas9 ribonucleoprotein (RNP) is challenging due to the poor delivery into target tissues and cells. Here, we introduce an effective delivery method for the CRISPR/Cas9 RNPs by finely tuning the formulation of ionizable lipid nanoparticles. The LNPs delivering CRISPR/Cas9 RNPs (CrLNPs) are demonstrated to induce gene editing with high efficiencies in various cancer cell lines in vitro. Furthermore, we show that CrLNPs can be delivered into tumor tissues with high efficiency, as well as induce significant gene editing in vivo. The current study presents an effective platform for nonviral delivery of the CRISPR/Cas9 system that can be applied as an in vivo gene editing therapeutic for treating various diseases such as cancer and genetic disorders.
Collapse
Affiliation(s)
- San Hae Im
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mincheol Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
6
|
Chan A, Tsourkas A. Intracellular Protein Delivery: Approaches, Challenges, and Clinical Applications. BME FRONTIERS 2024; 5:0035. [PMID: 38282957 PMCID: PMC10809898 DOI: 10.34133/bmef.0035] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024] Open
Abstract
Protein biologics are powerful therapeutic agents with diverse inhibitory and enzymatic functions. However, their clinical use has been limited to extracellular applications due to their inability to cross plasma membranes. Overcoming this physiological barrier would unlock the potential of protein drugs for the treatment of many intractable diseases. In this review, we highlight progress made toward achieving cytosolic delivery of recombinant proteins. We start by first considering intracellular protein delivery as a drug modality compared to existing Food and Drug Administration-approved drug modalities. Then, we summarize strategies that have been reported to achieve protein internalization. These techniques can be broadly classified into 3 categories: physical methods, direct protein engineering, and nanocarrier-mediated delivery. Finally, we highlight existing challenges for cytosolic protein delivery and offer an outlook for future advances.
Collapse
Affiliation(s)
| | - Andrew Tsourkas
- Department of Bioengineering,
University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Palacio-Castañeda V, van de Crommert B, Verploegen E, Overeem M, van Oostrum J, Verdurmen WP. Potent and selective eradication of tumor cells by an EpCAM-targeted Ras-degrading enzyme. Mol Ther Oncolytics 2023; 30:16-26. [PMID: 37485031 PMCID: PMC10362089 DOI: 10.1016/j.omto.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Despite decades of efforts, an urgent need remains to develop tumor cell-selective rat sarcoma (Ras)-targeting therapies that can treat patients with Ras-driven tumors. Here we report modular engineered proteins that degrade Ras selectively in tumor cells that overexpress the tumor cell marker epithelial cell adhesion molecule (EpCAM) by fusing the Ras degrader Ras-Rap1-specific endopeptidase with the translocation domain of the Pseudomonas aeruginosa exotoxin A (ETA) or diphtheria toxin (DT). Redirection to EpCAM is achieved by a designed ankyrin repeat protein. In two-dimensional tumor cell cultures, complete degradation of Ras proteins after 24 h was observed with EpCAM-targeted Ras degraders fused to ETA or DT in EpCAM-overexpressing MCF7 and HCT116 cells, with median inhibition concentration values at sub-nanomolar levels. The viability of EpCAM-low non-cancerous fibroblasts remained unaffected. In a three-dimensional (3D) tumor-on-a-chip system that mimics the natural tumor microenvironment, effective Ras degradation and selective toxicity toward tumor cells, particularly with the ETA-fused constructs, was determined on-chip. To conclude, we demonstrate the potential of modular engineered proteins to kill tumor cells highly selectively by simultaneously exploiting EpCAM as a tumor-specific cell surface molecule as well as Ras as an intracellular oncotarget in a 3D system mimicking the natural tumor microenvironment.
Collapse
Affiliation(s)
- Valentina Palacio-Castañeda
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| | - Bas van de Crommert
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| | - Elke Verploegen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| | - Mike Overeem
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| | - Jenny van Oostrum
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| | - Wouter P.R. Verdurmen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
8
|
Haley RM, Chan A, Billingsley MM, Gong N, Padilla MS, Kim EH, Wang HH, Yin D, Wangensteen KJ, Tsourkas A, Mitchell MJ. Lipid Nanoparticle Delivery of Small Proteins for Potent In Vivo RAS Inhibition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21877-21892. [PMID: 37115558 PMCID: PMC10727849 DOI: 10.1021/acsami.3c01501] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mutated RAS proteins are potent oncogenic drivers and have long been considered "undruggable". While RAS-targeting therapies have recently shown promise, there remains a clinical need for RAS inhibitors with more diverse targets. Small proteins represent a potential new therapeutic option, including K27, a designed ankyrin repeat protein (DARPin) engineered to inhibit RAS. However, K27 functions intracellularly and is incapable of entering the cytosol on its own, currently limiting its utility. To overcome this barrier, we have engineered a lipid nanoparticle (LNP) platform for potent delivery of functional K27-D30─a charge-modified version of the protein─intracellularly in vitro and in vivo. This system efficiently encapsulates charge-modified proteins, facilitates delivery in up to 90% of cells in vitro, and maintains potency after at least 45 days of storage. In vivo, these LNPs deliver K27-D30 to the cytosol of cancerous cells in the liver, inhibiting RAS-driven growth and ultimately reducing tumor load in an HTVI-induced mouse model of hepatocellular carcinoma. This work shows that K27 holds promise as a new cancer therapeutic when delivered using this LNP platform. Furthermore, this technology has the potential to broaden the use of LNPs to include new cargo types─beyond RNA─for diverse therapeutic applications.
Collapse
Affiliation(s)
- Rebecca M. Haley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexander Chan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Marshall S. Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Emily H. Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania
| | - Hejia Henry Wang
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania
| | - Dingzi Yin
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55902
| | - Kirk J. Wangensteen
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55902
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
9
|
Lam KK, Wong SH, Cheah PY. Targeting the 'Undruggable' Driver Protein, KRAS, in Epithelial Cancers: Current Perspective. Cells 2023; 12:cells12040631. [PMID: 36831298 PMCID: PMC9954350 DOI: 10.3390/cells12040631] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
This review summarizes recent development in synthetic drugs and biologics targeting intracellular driver genes in epithelial cancers, focusing on KRAS, and provides a current perspective and potential leads for the field. Compared to biologics, small molecule inhibitors (SMIs) readily penetrate cells, thus being able to target intracellular proteins. However, SMIs frequently suffer from pleiotropic effects, off-target cytotoxicity and invariably elicit resistance. In contrast, biologics are much larger molecules limited by cellular entry, but if this is surmounted, they may have more specific effects and less therapy-induced resistance. Exciting breakthroughs in the past two years include engineering of non-covalent KRAS G12D-specific inhibitor, probody bispecific antibodies, drug-peptide conjugate as MHC-restricted neoantigen to prompt immune response by T-cells, and success in the adoptive cell therapy front in both breast and pancreatic cancers.
Collapse
Affiliation(s)
- Kuen Kuen Lam
- Department of Colorectal Surgery, Singapore General Hospital, Singapore 169856, Singapore
| | | | - Peh Yean Cheah
- Department of Colorectal Surgery, Singapore General Hospital, Singapore 169856, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
- Correspondence:
| |
Collapse
|
10
|
Weber LI, Hartl M. Strategies to target the cancer driver MYC in tumor cells. Front Oncol 2023; 13:1142111. [PMID: 36969025 PMCID: PMC10032378 DOI: 10.3389/fonc.2023.1142111] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 03/29/2023] Open
Abstract
The MYC oncoprotein functions as a master regulator of cellular transcription and executes non-transcriptional tasks relevant to DNA replication and cell cycle regulation, thereby interacting with multiple proteins. MYC is required for fundamental cellular processes triggering proliferation, growth, differentiation, or apoptosis and also represents a major cancer driver being aberrantly activated in most human tumors. Due to its non-enzymatic biochemical functions and largely unstructured surface, MYC has remained difficult for specific inhibitor compounds to directly address, and consequently, alternative approaches leading to indirect MYC inhibition have evolved. Nowadays, multiple organic compounds, nucleic acids, or peptides specifically interfering with MYC activities are in preclinical or early-stage clinical studies, but none of them have been approved so far for the pharmacological treatment of cancer patients. In addition, specific and efficient delivery technologies to deliver MYC-inhibiting agents into MYC-dependent tumor cells are just beginning to emerge. In this review, an overview of direct and indirect MYC-inhibiting agents and their modes of MYC inhibition is given. Furthermore, we summarize current possibilities to deliver appropriate drugs into cancer cells containing derailed MYC using viral vectors or appropriate nanoparticles. Finding the right formulation to target MYC-dependent cancers and to achieve a high intracellular concentration of compounds blocking or attenuating oncogenic MYC activities could be as important as the development of novel MYC-inhibiting principles.
Collapse
|