1
|
Camacho S, Aoki PHB, Ekstrand F, Oliveira ON, Prinz CN. Enhancing Photothermal Therapy Against Breast Cancer Cells by Modulating the End Point of Gold Shell-Isolated Nanoparticles Using Nanostraw-Assisted Injection. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27816-27828. [PMID: 40299396 PMCID: PMC12086757 DOI: 10.1021/acsami.5c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025]
Abstract
Gold shell-isolated nanoparticles (AuSHINs) are promising photothermal therapy (PTT) agents for cancer treatment due to their excellent photoconversion efficiency, biocompatibility, colloidal stability, and tunable properties, including size, shape, and surface functionalization. However, their therapeutic efficacy in in vitro assays is often limited by poor cellular uptake and lysosomal entrapment, which can result in nanoparticle degradation and a reduction in PTT effectiveness. In this study, we demonstrate that nanostraw-assisted injection enhances the PTT efficacy of AuSHINs compared to the conventional incubation method, as evaluated in human breast cancer cell lines: adenocarcinoma cells (MDA-MB-231) and glandular carcinoma cells (MCF7). This enhancement is attributed to three differences between the delivery methods: nanoparticle internalization, intracellular targeting, and the progression of cell death pathways. Nanostraw injection resulted in approximately 10-fold higher internalization of AuSHINs compared to 0.5-h incubation. Confocal fluorescence microscopy revealed that AuSHINs delivered via conventional incubation predominantly localize within lysosomes, whereas those introduced through nanostraw-assisted injection primarily targeted the endoplasmic reticulum (ER), thus avoiding lysosomal degradation. This differential targeting led to approximately a 2-fold higher reduction in the viability of photoactivated breast cancer cells treated with nanostraw-delivered AuSHINs. Furthermore, nanostraw-assisted injection accelerated the initiation of apoptosis relative to incubation. PTT-induced cell death was more pronounced in MCF7 cells compared to MDA-MB-231 cells, reflecting the higher resistance to therapy of the latter. These findings highlight the potential of nanostraw-assisted injection to enhance PTT, and we now face the challenge of integrating it into in vivo delivery strategies.
Collapse
Affiliation(s)
- Sabrina
A. Camacho
- School
of Sciences, Humanities and Languages, São
Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| | - Pedro H. B. Aoki
- School
of Sciences, Humanities and Languages, São
Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| | - Frida Ekstrand
- Division
of Solid-State Physics and NanoLund, Lund
University, 221 00 Lund, Sweden
| | - Osvaldo N. Oliveira
- São
Carlos Institute of Physics, University
of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Christelle N. Prinz
- Division
of Solid-State Physics and NanoLund, Lund
University, 221 00 Lund, Sweden
| |
Collapse
|
2
|
Li P, Ma X, Huang D. Role of the lncRNA/Wnt signaling pathway in digestive system cancer: a literature review. Eur J Med Res 2024; 29:447. [PMID: 39218950 PMCID: PMC11367813 DOI: 10.1186/s40001-024-02033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
The long noncoding RNA (lncRNA)/Wingless (Wnt) axis is often dysregulated in digestive system tumors impacting critical cellular processes. Abnormal expression of specific Wnt-related lncRNAs such as LINC01606 (promotes motility), SLCO4A1-AS1 (promotes motility), and SH3BP5-AS1 (induces chemoresistance), plays a crucial role in these malignancies. These lncRNAs are promising targets for cancer diagnosis and therapy, offering new treatment perspectives. The lncRNAs, NEF and GASL1, differentially expressed in plasma show diagnostic potential for esophageal squamous cell carcinoma and gastric cancer, respectively. Additionally, Wnt pathway inhibitors like XAV-939 have demonstrated preclinical efficacy, underscoring their therapeutic potential. This review comprehensively analyzes the lncRNA/Wnt axis, highlighting its impact on cell proliferation, motility, and chemoresistance. By elucidating the complex molecular mechanisms of the lncRNA/Wnt axis, we aim to identify potential therapeutic targets for digestive system tumors to pave the way for the development of targeted treatment strategies.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| | - Xiao Ma
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
3
|
Chen D, Gu X, Nurzat Y, Xu L, Li X, Wu L, Jiao H, Gao P, Zhu X, Yan D, Li S, Xue C. Writers, readers, and erasers RNA modifications and drug resistance in cancer. Mol Cancer 2024; 23:178. [PMID: 39215288 PMCID: PMC11363509 DOI: 10.1186/s12943-024-02089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Drug resistance in cancer cells significantly diminishes treatment efficacy, leading to recurrence and metastasis. A critical factor contributing to this resistance is the epigenetic alteration of gene expression via RNA modifications, such as N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), 7-methylguanosine (m7G), pseudouridine (Ψ), and adenosine-to-inosine (A-to-I) editing. These modifications are pivotal in regulating RNA splicing, translation, transport, degradation, and stability. Governed by "writers," "readers," and "erasers," RNA modifications impact numerous biological processes and cancer progression, including cell proliferation, stemness, autophagy, invasion, and apoptosis. Aberrant RNA modifications can lead to drug resistance and adverse outcomes in various cancers. Thus, targeting RNA modification regulators offers a promising strategy for overcoming drug resistance and enhancing treatment efficacy. This review consolidates recent research on the role of prevalent RNA modifications in cancer drug resistance, with a focus on m6A, m1A, m5C, m7G, Ψ, and A-to-I editing. Additionally, it examines the regulatory mechanisms of RNA modifications linked to drug resistance in cancer and underscores the existing limitations in this field.
Collapse
Affiliation(s)
- Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yeltai Nurzat
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Lixin Wu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Peng Gao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Shaohua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
4
|
Pegoraro C, Domingo-Ortí I, Conejos-Sánchez I, Vicent MJ. Unlocking the Mitochondria for Nanomedicine-based Treatments: Overcoming Biological Barriers, Improving Designs, and Selecting Verification Techniques. Adv Drug Deliv Rev 2024; 207:115195. [PMID: 38325562 DOI: 10.1016/j.addr.2024.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/13/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Enhanced targeting approaches will support the treatment of diseases associated with dysfunctional mitochondria, which play critical roles in energy generation and cell survival. Obstacles to mitochondria-specific targeting include the presence of distinct biological barriers and the need to pass through (or avoid) various cell internalization mechanisms. A range of studies have reported the design of mitochondrially-targeted nanomedicines that navigate the complex routes required to influence mitochondrial function; nonetheless, a significant journey lies ahead before mitochondrially-targeted nanomedicines become suitable for clinical use. Moving swiftly forward will require safety studies, in vivo assays confirming effectiveness, and methodologies to validate mitochondria-targeted nanomedicines' subcellular location/activity. From a nanomedicine standpoint, we describe the biological routes involved (from administration to arrival within the mitochondria), the features influencing rational design, and the techniques used to identify/validate successful targeting. Overall, rationally-designed mitochondria-targeted-based nanomedicines hold great promise for precise subcellular therapeutic delivery.
Collapse
Affiliation(s)
- Camilla Pegoraro
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inés Domingo-Ortí
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inmaculada Conejos-Sánchez
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
5
|
Khanom J, I Rezk A, Park CH, Kim CS. Near-Infrared Responsive Synergistic Chemo-Phototherapy from Surface-Functionalized Poly(ε-caprolactone)-Poly(d,l-lactic- co-glycolic acid) Composite Nanofibers for Postsurgical Cancer Treatment. Biomacromolecules 2022; 23:3582-3592. [PMID: 35949062 DOI: 10.1021/acs.biomac.2c00351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The combination of hyperthermia and chemotherapy has attracted significant attention in local cancer treatment following surgical resection. Pyrrole is a potent photothermal agent that can induce a temperature rise at different concentrations in the surrounding medium by absorbing near-infrared radiation (NIR). In this study, poly(ε-caprolactone) (PCL) and poly (d,l-lactic-co-glycolic acid) (PLGA) were used to make nanofibers using the electrospinning process. Then, pyrrole in different concentrations of (0.2, 0.4, and 0.6) M was attached to the surface of PCL-PLGA fiber mats by in situ polymerization, which was confirmed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) analysis. A concentration-dependent local temperature rise was observed using a FLIR camera under near-infrared (NIR) laser irradiation. For the hyperthermia effect, pyrrole concentration (0.06 M) was used for in vitro drug release studies and cell viability assays because under NIR irradiation (2 W/cm2, 3 min), it increased the local temperature to around 45 °C. In vitro drug release studies confirmed that NIR irradiation increased the diffusion rate of doxorubicin (DOX) by increasing the environmental temperature above the glass transition temperature of PLGA. In vitro cytotoxicity experiments further confirmed that PCL-PLGA-DOX/PPy fiber mats showed an enhanced inhibitory effect against CT26 and MCF7 cells by the combination of hyperthermia and chemotherapy.
Collapse
Affiliation(s)
- Jakia Khanom
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea.,Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Abdelrahman I Rezk
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea.,Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea.,Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea.,Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|