1
|
Md Yusoff MH, Shafie MH. Pioneering polysaccharide extraction with deep eutectic solvents: A review on impacts to extraction yield, physicochemical properties and bioactivities. Int J Biol Macromol 2025; 306:141469. [PMID: 40015410 DOI: 10.1016/j.ijbiomac.2025.141469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Deep eutectic solvents (DES) have emerged as promising solvents for polysaccharide extraction from various sources. The DES which is produced by combining hydrogen bond donors and acceptors offers sustainability, low toxicity, a wide range of solubility and tailored properties. This review examines DES features and their effectiveness as extraction media for polysaccharides, highlighting the mechanisms behind their enhanced extraction efficiency compared to classical solvents. Additionally, we discuss the mechanism behind the DES affecting the physicochemical and structural properties of the extracted polysaccharides. The review also explores the antioxidant, antihyperglycemic, antihyperlipidemic and immunomodulatory properties of DES-extracted polysaccharides compared to classical solvents which emphasize structural changes in the polymer complex. This review intends to shed insight into the prospects of green extraction technologies by providing information on the benefits of DES and its potential to modify polysaccharide characteristics and enhance their biological activities, which is covered in depth for the first time here.
Collapse
Affiliation(s)
- Muhammad Hasnun Md Yusoff
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Muhammad Hakimin Shafie
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
2
|
Zhao J, Yan P, Pang Y, Dong Y, Shi X. Epigenetic Modifications in Alternative Splicing of LDLR pre-mRNA on Hypercholesterolemia Following Aerobic Exercise Training. Int J Mol Sci 2025; 26:4262. [PMID: 40362496 PMCID: PMC12071991 DOI: 10.3390/ijms26094262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
This study investigated whether exercise training improved cholesterol metabolism through modifying alternative splicing of the low-density lipoprotein receptor (LDLR). Blood lipids and expressions of LDLR splice variants were compared between exercise-trained and non-trained young adults with normal and high cholesterol. The expression of LDLR splice isoforms were examined using RT-PCR and the histone H3K36me3 by CHIP-assay in mouse liver following a 13-week normal or high-cholesterol-diet combined with or without 8 weeks of aerobic exercise-training. The influence of histone modifications on LDLR alternative splicing was examined in HepG2 cells (human liver cell-line). Expression levels of LDLR deletions in exons 4 and 12 (LDLR-∆Exon4 and LDLR-∆Exon12) were significantly higher in the obese adults with high-cholesterol. These LDLR splice variants were significantly lower in the exercise-trained than non-trained group with normal cholesterol. Thirteen weeks of high-cholesterol feeding increased LDLR-∆Exon14 expression in mice, which was diminished after 8 weeks of exercise training. When H3-K36me3 or the MORF-related gene on chromosomes 15 were overexpressed and interfered, the levels of LDLR-∆Exon4 and LDLR-∆Exon12 expression in HepG2 cells were significantly augmented and inhibited, respectively. Hypercholesterolemia was associated with augmented expressions of LDLR splice variants in obese adults and following high-cholesterol diet in mice. Aerobic exercise training prevented and reversed the dyslipidemia-related alternative splicing of LDLR pre-mRNA. The histone modifications contributed to the alternative splicing.
Collapse
Affiliation(s)
- Jinfeng Zhao
- Institute of Physical Education, Shanxi University, Taiyuan 030006, China
- UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Peirun Yan
- Institute of Physical Education, Shanxi University, Taiyuan 030006, China
| | - Yana Pang
- Department of Neurobiology, Shanxi Medical University, Taiyuan 030001, China
| | - Yuankun Dong
- Department of Neurobiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xiangrong Shi
- UNT Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
3
|
Aguchem RN, Okagu IU, Okorigwe EM, Uzoechina JO, Nnemolisa SC, Ezeorba TPC. Role of CETP, PCSK-9, and CYP7-alpha in cholesterol metabolism: Potential targets for natural products in managing hypercholesterolemia. Life Sci 2024; 351:122823. [PMID: 38866219 DOI: 10.1016/j.lfs.2024.122823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide, primarily affecting the heart and blood vessels, with atherosclerosis being a major contributing factor to their onset. Epidemiological and clinical studies have linked high levels of low-density lipoprotein (LDL) emanating from distorted cholesterol homeostasis as its major predisposing factor. Cholesterol homeostasis, which involves maintaining the balance in body cholesterol level, is mediated by several proteins or receptors, transcription factors, and even genes, regulating cholesterol influx (through dietary intake or de novo synthesis) and efflux (by their conversion to bile acids). Previous knowledge about CVDs management has evolved around modulating these receptors' activities through synthetic small molecules/antibodies, with limited interest in natural products. The central roles of the cholesteryl ester transfer protein (CETP), proprotein convertase subtilisin/kexin type 9 (PCSK9), and cytochrome P450 family 7 subfamily A member 1 (CYP7A1), among other proteins or receptors, have fostered growing scientific interests in understanding more on their regulatory activities and potential as drug targets. We present up-to-date knowledge on the contributions of CETP, PCSK9, and CYP7A1 toward CVDs, highlighting the clinical successes and failures of small molecules/antibodies to modulate their activities. In recommendation for a new direction to improve cardiovascular health, we have presented recent findings on natural products (including functional food, plant extracts, phytochemicals, bioactive peptides, and therapeutic carbohydrates) that also modulate the activities of CETP, PCSK-9, and CYP7A1, and emphasized the need for more research efforts redirected toward unraveling more on natural products potentials even at clinical trial level for CVD management.
Collapse
Affiliation(s)
- Rita Ngozi Aguchem
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Innocent Uzochukwu Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Ekezie Matthew Okorigwe
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Chemistry and Biochemistry, College of Sciences, University of Notre Dame, 46556 Notre Dame, IN, United States
| | - Jude Obiorah Uzoechina
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Biochemistry and Molecular Biology, Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, PR China
| | | | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| |
Collapse
|
4
|
Wang W, Qiao J, Su Z, Wei H, Wu J, Liu Y, Lin R, Michael N. Serum metabolites and hypercholesterolemia: insights from a two-sample Mendelian randomization study. Front Cardiovasc Med 2024; 11:1410006. [PMID: 39171325 PMCID: PMC11337230 DOI: 10.3389/fcvm.2024.1410006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024] Open
Abstract
Background Hypercholesterolemia, a critical contributor to cardiovascular disease, is not fully understood in terms of its relationship with serum metabolites and their role in disease pathogenesis. Methods This study leveraged GWAS data to explore the relationship between serum metabolites and hypercholesterolemia, pinpointing significant metabolites via Mendelian Randomization (MR) and KEGG pathway enrichment analysis. Data on metabolites were sourced from a European population, with analysis focusing on individuals diagnosed with hypercholesterolemia. Results Out of 486 metabolites analyzed, ten showed significant associations with hypercholesterolemia, categorized into those enhancing risk and those with protective effects. Specifically, 2-methoxyacetaminophen sulfate and 1-oleoylglycerol (1-monoolein) were identified as risk-enhancing, with odds ratios (OR) of 1.545 (95% CI: 1.230-1.939; P_FDR = 3E-04) and 1.462 (95% CI: 1.036-2.063; P_FDR = 0.037), respectively. On the protective side, 3-(cystein-S-yl)acetaminophen, hydroquinone sulfate, and 2-hydroxyacetaminophen sulfate demonstrated ORs of 0.793 (95% CI: 0.735-0.856; P_FDR = 6.18E-09), 0.641 (95% CI: 0.423-0.971; P_FDR = 0.042), and 0.607 (95% CI: 0.541-0.681; P_FDR = 5.39E-17), respectively. In addition, KEGG pathway enrichment analysis further revealed eight critical pathways, comprising "biosynthesis of valine, leucine, and isoleucine", "phenylalanine metabolism", and "pyruvate metabolism", emphasizing their significant role in the pathogenesis of hypercholesterolemia. Conclusion This study underscores the potential causal links between particular serum metabolites and hypercholesterolemia, offering innovative viewpoints on the metabolic basis of the disease. The identified metabolites and pathways offer promising targets for therapeutic intervention and warrant further investigation.
Collapse
Affiliation(s)
- Weitao Wang
- The First Clinical College of Medicine, Lanzhou University, Lanzhou, China
| | - Jingwen Qiao
- Graduate Department of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhaoyin Su
- The First Clinical College of Medicine, Lanzhou University, Lanzhou, China
| | - Hui Wei
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jincan Wu
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yatao Liu
- Department of Anesthesia, First Hospital of Lanzhou University, Lanzhou, China
| | - Rubing Lin
- Department of Orthopedics, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Nerich Michael
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Li T, Han K, Feng G, Guo J, Wan Z, Yang X. Condensation of Soy Protein Peptides Contributes to Sequester Bile Acids and Mitigate LPS-Induced Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1266-1275. [PMID: 38109330 DOI: 10.1021/acs.jafc.3c06480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Soy protein is widely known to have serum triglyceride (TG) and cholesterol-lowering effects associated with a reduced risk of cardiovascular disease. Recent studies highlighted that the extension region (ER) domain of soy 7S globulin (β-conglycinin) is a key component responsible for the serum TG-lowering effect via modulation of bile acid (BA) homeostasis. Here, we studied the sequestration of BAs by ER peptides during intestinal digestion in vitro and assessed the anti-inflammatory effects of ER peptides using Caco-2/HT29-MTX/RAW264.7 triple-cell cocultures as an intestine cell model. Results show that ER peptides, which share characteristics of intrinsically disordered regions (IDRs), are capable of forming peptide condensates and exhibit the capability to sequester BA-containing colloidal structures during intestinal digestion in vitro. Moreover, BAs enhance the penetration of peptide condensates within the mucus layer, enabling ER peptides to mitigate lipopolysaccharide (LPS)-induced gut inflammation. These results provide a possible explanation for the molecular mechanisms underlying the modulation of BA homeostasis by soybean proteins.
Collapse
Affiliation(s)
- Tanghao Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Kaining Han
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Guangxin Feng
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Jian Guo
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Jin H, Lu W, Zhang Y, Wu Y, Ding J, Orion IRCV, Liu C. Functionalized Periodic Mesoporous Silica Nanoparticles for Inhibiting the Progression of Atherosclerosis by Targeting Low-Density Lipoprotein Cholesterol. Pharmaceutics 2024; 16:74. [PMID: 38258085 PMCID: PMC10821319 DOI: 10.3390/pharmaceutics16010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Atherosclerotic disease is a substantial global burden, and existing treatments, such as statins, are recommended to lower low-density lipoprotein cholesterol (LDL-C) levels and inhibit the progression of atherosclerosis. However, side effects, including gastrointestinal unease, potential harm to the liver, and discomfort in the muscles, might be observed. In this study, we propose a novel method using periodic mesoporous silica nanoparticles (PMS) to create heparin-modified PMS (PMS-HP) with excellent biocompatibility, enabling selective removal of LDL-C from the blood. In vitro, through the introduction of PMS-HP into the plasma of mice, we observed that, compared to PMS alone, PMS-HP could selectively adsorb LDL-C while avoiding interference with valuable components such as plasma proteins and high-density lipoprotein cholesterol (HDL-C). Notably, further investigations revealed that the adsorption of LDL-C by PMS-HP could be well-fitted to quasi-first-order (R2 = 0.993) and quasi-second-order adsorption models (R2 = 0.998). Likewise, in vivo, intravenous injection of PMS-HP enabled targeted LDL-C adsorption (6.5 ± 0.73 vs. 8.6 ± 0.76 mM, p < 0.001) without affecting other plasma constituents, contributing to reducing intravascular plaque formation (3.66% ± 1.06% vs. 1.87% ± 0.79%, p < 0.05) on the aortic wall and inhibiting vascular remodeling (27.2% ± 6.55% vs. 38.3% ± 1.99%, p < 0.05). Compared to existing lipid adsorption techniques, PMS-HP exhibited superior biocompatibility and recyclability, rendering it valuable for both in vivo and in vitro applications.
Collapse
Affiliation(s)
- Hao Jin
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing 210009, China; (H.J.); (Y.Z.); (Y.W.); (I.R.C.V.O.)
| | - Wenbin Lu
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing 210009, China; (H.J.); (Y.Z.); (Y.W.); (I.R.C.V.O.)
| | - Yahao Zhang
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing 210009, China; (H.J.); (Y.Z.); (Y.W.); (I.R.C.V.O.)
| | - Yong Wu
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing 210009, China; (H.J.); (Y.Z.); (Y.W.); (I.R.C.V.O.)
| | - Jiandong Ding
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing 210009, China; (H.J.); (Y.Z.); (Y.W.); (I.R.C.V.O.)
| | - I. R. Chiara Villamil Orion
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing 210009, China; (H.J.); (Y.Z.); (Y.W.); (I.R.C.V.O.)
| | - Cihui Liu
- Department of Biomedical Sciences, Nanjing Normal University, Nanjing 210023, China;
| |
Collapse
|
7
|
Srivastava RAK. New opportunities in the management and treatment of refractory hypercholesterolemia using in vivo CRISPR-mediated genome/base editing. Nutr Metab Cardiovasc Dis 2023; 33:2317-2325. [PMID: 37805309 DOI: 10.1016/j.numecd.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 10/09/2023]
Abstract
AIMS Refractory hypercholesterolemia (RH), caused primarily by the loss-of-function mutation of LDL receptor (LDLR) gene seen in HoFH and HeFH patients, remains a major risk factor for atherosclerotic cardiovascular disease (ASCVD). Statin and ezetimibe combination therapy lower circulating LDL by 30% in HoFH patients. PCSK9 mAB, being an LDLR-dependent therapy, is not effective in HoFH, but lowers LDL by 25% in HeFH patients. A maximum reduction of 50% was noted in HoFH patients treated with ANGPTL3 mAB, which was not enough to achieve therapeutic goal of LDL. Therefore, new approaches are warranted to offer hopes to individuals intolerant to higher dose statins and not able to achieve recommended LDL level. DATA SYNTHESIS New approaches to lower LDL include gene therapy and gene editing. AAV-based gene therapy has shown encouraging results in animal models. Using CRISPR/Cas9-mediated genome/base editing, gain of function and loss of function have been successfully done in animal models. Recent progress in the refinement of genome/base editing has overcome the issues of off-target mutagenesis with ∼1% mutagenesis in case of PCSK9 and almost no off-target mutagenesis in inactivating ANGPTL3 in animal models showing 50% reduction in cholesterol. Current approaches using CRISPR-Cas9 genome/base editing targeting LDLR-dependent and LDLR-independent pathways are underway. CONCLUSIONS The new information on gain of LDLR function and inactivation of ANGPTL3 together with developments in genome/base editing technology to overcome off-target insertion and deletion mutagenesis offer hope to refractory hypercholesterolemic individuals who are at a higher risk of developing ASCVD.
Collapse
|
8
|
Huang Y, Wan X, Zhao Z, Liu H, Wen Y, Wu W, Ge X, Zhao C. Metabolomic analysis and pathway profiling of paramylon production in Euglena gracilis grown on different carbon sources. Int J Biol Macromol 2023; 246:125661. [PMID: 37399871 DOI: 10.1016/j.ijbiomac.2023.125661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/18/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Paramylon (β-1,3-glucan) produced by Euglena gracilis displays antioxidant, antitumor, and hypolipidaemic functions. The biological properties of paramylon production by E. gracilis can be understood by elucidating the metabolic changes within the algae. In this study, the carbon sources in AF-6 medium were replaced with glucose, sodium acetate, glycerol, or ethanol, and the paramylon yield was measured. Adding 0.1260 g/L glucose to the culture medium resulted in the highest paramylon yield of 70.48 %. The changes in metabolic pathways in E. gracilis grown on glucose were assessed via non-targeted metabolomics analysis using ultra-high-performance liquid chromatography coupled to high-resolution quadrupole-Orbitrap mass spectrometry. We found that glucose, as a carbon source, regulated some differentially expressed metabolites, including l-glutamic acid, γ-aminobutyric acid (GABA), and l-aspartic acid. Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes further showed that glucose regulated the carbon and nitrogen balance through the GABA shunt, which enhanced photosynthesis, regulated the flux of carbon and nitrogen into the tricarboxylic acid cycle, promoted glucose uptake, and increased the accumulation of paramylon. This study provides new insights into E. gracilis metabolism during paramylon synthesis.
Collapse
Affiliation(s)
- Yajun Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuzhi Wan
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zexu Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanqi Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain
| | - Weihao Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaodong Ge
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
9
|
Long XQ, Liu MZ, Liu ZH, Xia LZ, Lu SP, Xu XP, Wu MH. Bile acids and their receptors: Potential therapeutic targets in inflammatory bowel disease. World J Gastroenterol 2023; 29:4252-4270. [PMID: 37545642 PMCID: PMC10401658 DOI: 10.3748/wjg.v29.i27.4252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Chronic and recurrent inflammatory disorders of the gastrointestinal tract caused by a complex interplay between genetics and intestinal dysbiosis are called inflammatory bowel disease. As a result of the interaction between the liver and the gut microbiota, bile acids are an atypical class of steroids produced in mammals and traditionally known for their function in food absorption. With the development of genomics and metabolomics, more and more data suggest that the pathophysiological mechanisms of inflammatory bowel disease are regulated by bile acids and their receptors. Bile acids operate as signalling molecules by activating a variety of bile acid receptors that impact intestinal flora, epithelial barrier function, and intestinal immunology. Inflammatory bowel disease can be treated in new ways by using these potential molecules. This paper mainly discusses the increasing function of bile acids and their receptors in inflammatory bowel disease and their prospective therapeutic applications. In addition, we explore bile acid metabolism and the interaction of bile acids and the gut microbiota.
Collapse
Affiliation(s)
- Xiong-Quan Long
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Ming-Zhu Liu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Zi-Hao Liu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Lv-Zhou Xia
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Shi-Peng Lu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Xiao-Ping Xu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Ming-Hao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| |
Collapse
|
10
|
Stanciu MC, Nichifor M, Teacă CA. Bile Acid Sequestrants Based on Natural and Synthetic Gels. Gels 2023; 9:500. [PMID: 37367171 DOI: 10.3390/gels9060500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Bile acid sequestrants (BASs) are non-systemic therapeutic agents used for the management of hypercholesterolemia. They are generally safe and not associated with serious systemic adverse effects. Usually, BASs are cationic polymeric gels that have the ability to bind bile salts in the small intestine and eliminate them by excretion of the non-absorbable polymer-bile salt complex. This review gives a general presentation of bile acids and the characteristics and mechanisms of action of BASs. The chemical structures and methods of synthesis are shown for commercial BASs of first- (cholestyramine, colextran, and colestipol) and second-generation (colesevelam and colestilan) and potential BASs. The latter are based on either synthetic polymers such as poly((meth)acrylates/acrylamides), poly(alkylamines), poly(allylamines) and vinyl benzyl amino polymers or biopolymers, such as cellulose, dextran, pullulan, methylan, and poly(cyclodextrins). A separate section is dedicated to molecular imprinting polymers (MIPs) because of their great selectivity and affinity for the template molecules used in the imprinting technique. Focus is given to the understanding of the relationships between the chemical structure of these cross-linked polymers and their potential to bind bile salts. The synthetic pathways used in obtaining BASs and their in vitro and in vivo hypolipidemic activities are also introduced.
Collapse
Affiliation(s)
- Magdalena-Cristina Stanciu
- Natural Polymers, Bioactive and Biocompatible Materials Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Marieta Nichifor
- Natural Polymers, Bioactive and Biocompatible Materials Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Carmen-Alice Teacă
- Center for Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
11
|
Srivastava RAK. A Review of Progress on Targeting LDL Receptor-Dependent and -Independent Pathways for the Treatment of Hypercholesterolemia, a Major Risk Factor of ASCVD. Cells 2023; 12:1648. [PMID: 37371118 DOI: 10.3390/cells12121648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Since the discovery of the LDL receptor in 1973 by Brown and Goldstein as a causative protein in hypercholesterolemia, tremendous amounts of effort have gone into finding ways to manage high LDL cholesterol in familial hypercholesterolemic (HoFH and HeFH) individuals with loss-of-function mutations in the LDL receptor (LDLR) gene. Statins proved to be the first blockbuster drug, helping both HoFH and HeFH individuals by inhibiting the cholesterol synthesis pathway rate-limiting enzyme HMG-CoA reductase and inducing the LDL receptor. However, statins could not achieve the therapeutic goal of LDL. Other therapies targeting LDLR include PCSK9, which lowers LDLR by promoting LDLR degradation. Inducible degrader of LDLR (IDOL) also controls the LDLR protein, but an IDOL-based therapy is yet to be developed. Among the LDLR-independent pathways, such as angiopoietin-like 3 (ANGPTL3), apolipoprotein (apo) B, apoC-III and CETP, only ANGPTL3 offers the advantage of treating both HoFH and HeFH patients and showing relatively better preclinical and clinical efficacy in animal models and hypercholesterolemic individuals, respectively. While loss-of-LDLR-function mutations have been known for decades, gain-of-LDLR-function mutations have recently been identified in some individuals. The new information on gain of LDLR function, together with CRISPR-Cas9 genome/base editing technology to target LDLR and ANGPTL3, offers promise to HoFH and HeFH individuals who are at a higher risk of developing atherosclerotic cardiovascular disease (ASCVD).
Collapse
Affiliation(s)
- Rai Ajit K Srivastava
- Integrated Pharma Solutions LLC, Boston, MA 02101-02117, USA
- College of Professional Studies, Northeastern University, Boston, MA 02101-02117, USA
| |
Collapse
|
12
|
Benítez V, Rebollo-Hernanz M, Braojos C, Cañas S, Gil-Ramírez A, Aguilera Y, Martín-Cabrejas MA. Changes in the cocoa shell dietary fiber and phenolic compounds after extrusion determine its functional and physiological properties. Curr Res Food Sci 2023; 6:100516. [PMID: 37215741 PMCID: PMC10196956 DOI: 10.1016/j.crfs.2023.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/09/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
The influence of different extrusion conditions on the cocoa shell (CS) dietary fiber, phenolic compounds, and antioxidant and functional properties was evaluated. Extrusion produced losses in the CS dietary fiber (3-26%), especially in the insoluble fraction, being more accentuated at higher temperatures (160 °C) and lower moisture feed (15-20%). The soluble fiber fraction significantly increased at 135 °C because of the solubilization of galactose- and glucose-containing insoluble polysaccharides. The extruded CS treated at 160 °C-25% of feed moisture showed the highest increase of total (27%) and free (58%) phenolic compounds, accompanied by an increase of indirect (10%) and direct (77%) antioxidant capacity. However, more promising results relative to the phenolic compounds' bioaccessibility after in vitro simulated digestion were observed for 135°C-15% of feed moisture extrusion conditions. The CS' physicochemical and techno-functional properties were affected by extrusion, producing extrudates with higher bulk density, a diminished capacity to hold oil (22-28%) and water (18-65%), and improved swelling properties (14-35%). The extruded CS exhibited increased glucose adsorption capacity (up to 2.1-fold, at 135 °C-15% of feed moisture) and α-amylase in vitro inhibitory capacity (29-54%), accompanied by an increase in their glucose diffusion delaying ability (73-91%) and their starch digestion retardation capacity (up to 2.8-fold, at 135 °C-15% of feed moisture). Moreover, the extruded CS preserved its cholesterol and bile salts binding capacity and pancreatic lipase inhibitory properties. These findings generated knowledge of the CS valorization through extrusion to produce foods rich in dietary fiber with improved health-promoting properties due to the extrusion-triggered fiber solubilization.
Collapse
Affiliation(s)
- Vanesa Benítez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC). C/ Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Miguel Rebollo-Hernanz
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC). C/ Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Cheyenne Braojos
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC). C/ Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Silvia Cañas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC). C/ Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Alicia Gil-Ramírez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC). C/ Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC). C/ Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María A. Martín-Cabrejas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC). C/ Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
13
|
Li C, Wang D, Jiang Z, Gao Y, Sun L, Li R, Chen M, Lin C, Liu D. Non-coding RNAs in diabetes mellitus and diabetic cardiovascular disease. Front Endocrinol (Lausanne) 2022; 13:961802. [PMID: 36147580 PMCID: PMC9487522 DOI: 10.3389/fendo.2022.961802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
More than 10% of the world's population already suffers from varying degrees of diabetes mellitus (DM), but there is still no cure for the disease. Cardiovascular disease (CVD) is one of the most common and dangerous of the many health complications that can be brought on by DM, and has become the leading cause of death in people with diabetes. While research on DM and associated CVD is advancing, the specific mechanisms of their development are still unclear. Given the threat of DM and CVD to humans, the search for new predictive markers and therapeutic ideas is imminent. Non-coding RNAs (ncRNAs) have been a popular subject of research in recent years. Although they do not encode proteins, they play an important role in living organisms, and they can cause disease when their expression is abnormal. Numerous studies have observed aberrant ncRNAs in patients with DM complications, suggesting that they may play an important role in the development of DM and CVD and could potentially act as biomarkers for diagnosis. There is additional evidence that treatment with existing drugs for DM, such as metformin, alters ncRNA expression levels, suggesting that regulation of ncRNA expression may be a key mechanism in future DM treatment. In this review, we assess the role of ncRNAs in the development of DM and CVD, as well as the evidence for ncRNAs as potential therapeutic targets, and make use of bioinformatics to analyze differential ncRNAs with potential functions in DM.
Collapse
Affiliation(s)
- Chengshun Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pediatrics, First Hospital of Jilin University, Changchun, China
| | - Rong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Minqi Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Dianfeng Liu,
| |
Collapse
|