1
|
Edera R, Ueda K, Tomita S, Higashi K, Moribe K. Impact of Microemulsion Oil Components on Liquid-Liquid Phase Separation of a Supersaturated Drug Revealed by Cryo-TEM and 1H NMR Analysis. Mol Pharm 2025; 22:1539-1554. [PMID: 39950408 DOI: 10.1021/acs.molpharmaceut.4c01257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Supersaturatable self-microemulsifying drug delivery system (S-SMEDDS) has recently been utilized to enhance the oral absorption of poorly water-soluble drugs. S-SMEDDS forms drug-incorporated microemulsions (MEs) during aqueous dispersion with the formation of drug supersaturation in the bulk water phase. However, the liquid-liquid phase separation (LLPS) behavior of the supersaturated drugs within MEs has not been well studied. This study investigated the impact of S-SMEDDS components on the LLPS of the supersaturated drug and the achievable supersaturation level of the drug in MEs. Fenofibrate (FFB)-loaded S-SMEDDS formulations composed of different oils, Labrafil M 1944 CS (M1944) and Labrafac PG (PG), were prepared and dispersed into water to form MEs (M1944 ME and PG ME). Cryo-TEM measurements revealed the coexistence of swelling micelles and nanosized FFB-rich droplets in highly FFB-loaded MEs, indicating that FFB underwent LLPS even in the MEs. The FFB-rich droplet size was significantly reduced in PG ME. NMR-based quantification of the solubilized FFB in swelling micelles and phase-separated FFB revealed that apparent amorphous solubility of FFB increased with increasing M1944 components in MEs, while that was almost constant regardless of PG contents. On the other hand, PG was largely partitioned into the FFB-rich phase, resulting in the reduction of the chemical potential of FFB in the FFB-rich phase and the maximum free FFB concentration in the bulk water phase. The mixing of PG with the FFB-rich phase would work to maintain the FFB-rich droplet as a smaller size. Meanwhile, M1944 was minimally distributed to the FFB-rich phase, keeping the maximum supersaturation level of FFB. This study highlights that the impact of S-SMEDDS oil components on the physicochemical properties of the drug-rich phase formed via LLPS and achievable drug supersaturation should be considered when designing S-SMEDDS formulations to enhance drug absorption.
Collapse
Affiliation(s)
- Risa Edera
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Saeko Tomita
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
2
|
Ueda K, Moseson DE, Taylor LS. Amorphous solubility advantage: Theoretical considerations, experimental methods, and contemporary relevance. J Pharm Sci 2025; 114:18-39. [PMID: 39222748 DOI: 10.1016/j.xphs.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Twenty-five years ago, Hancock and Parks asked a provocative question: "what is the true solubility advantage for amorphous pharmaceuticals?" Difficulties in determining the amorphous solubility have since been overcome due to significant advances in theoretical understanding and experimental methods. The amorphous solubility is now understood to be the concentration after the drug undergoes liquid-liquid or liquid-glass phase separation, forming a water-saturated drug-rich phase in metastable equilibrium with an aqueous phase containing molecularly dissolved drug. While crystalline solubility is an essential parameter impacting the absorption of crystalline drug formulations, amorphous solubility is a vital factor for considering absorption from supersaturating formulations. However, the amorphous solubility of drugs is complex, especially in the presence of formulation additives and gastrointestinal components, and concentration-based measurements may not indicate the maximum drug thermodynamic activity. This review discusses the concept of the amorphous solubility advantage, including a historical perspective, theoretical considerations, experimental methods for amorphous solubility measurement, and the contribution of supersaturation and amorphous solubility to drug absorption. Leveraging amorphous solubility and understanding the associated physicochemical principles can lead to more effective development strategies for poorly water-soluble drugs, ultimately benefiting therapeutic outcomes.
Collapse
Affiliation(s)
- Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Dana E Moseson
- Worldwide Research and Development, Pfizer, Inc., Groton, CT 06340, United States
| | - Lynne S Taylor
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
3
|
Han Y, Yang W. Monodispersed, Micron-Sized Supermicroporous Silica Particles by Cetyltrimethylammonium Bromide-Mediated Preparation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2352-2361. [PMID: 38240141 DOI: 10.1021/acs.langmuir.3c03548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
In this study, we present a novel modified Stöber method utilizing cetyltrimethylammonium bromide (CTAB) as a mediator for the preparation of monodispersed, micron-sized supermicroporous silica particles. Observed results show prepared silica particles ranging in size from 0.64 to 1.36 μm with an increase in CTAB concentration from 1.0 to 5.0 mM. The particles exhibited low polydispersity (<5%), a high Brunauer-Emmett-Teller surface area (570 to 1064 m2/g), and pore volumes ranging from 0.22 to 0.39 cm3/g. The pore size, determined using the Barrett-Joyner-Halenda method from the adsorption branches of the isotherms, was approximately 1.9 nm, specifically 1.83, 1.85, and 1.90 nm, as the CTAB concentration increased from 1.0 to 2.5 and 5.0 mM, respectively. The resulting particles displayed a narrow distribution of pore diameters. In addition, to obtain an in-depth understanding of the role of CTAB on the preparation of silica particles, a possible mechanism is also investigated using conductivity, dynamic light scattering (DLS), zeta potential, FT-IR spectra, and transmission electron microscopy. Our findings demonstrate that CTAB plays multiple roles in the hydrolysis/condensation of TEOS (tetraethyl orthosilicate) and subsequent nucleation and growth of silica particles. CTAB acts as a template for superporosity, a stabilizer for colloids, and an accelerator for nucleation and growth, leading to formation of monodispersed micrometer silica particles. Further characterization through FT-IR and 29Si solid NMR spectra revealed that the micron silica particles were obtained with inhomogeneity in the condensation degree, allowing for selective etching through hot incubation to form micron-sized hollow silica spheres.
Collapse
Affiliation(s)
- Yandong Han
- Institute of Nanoscience and Engineering, National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Zhengzhou 450000, China
| | - Wensheng Yang
- Institute of Nanoscience and Engineering, National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Zhengzhou 450000, China
- College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
4
|
Bharti K, Deepika D, Kumar M, Jha A, Manjit, Akhilesh, Tiwari V, Kumar V, Mishra B. Development and Evaluation of Amorphous Solid Dispersion of Riluzole with PBPK Model to Simulate the Pharmacokinetic Profile. AAPS PharmSciTech 2023; 24:219. [PMID: 37891363 DOI: 10.1208/s12249-023-02680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
In the current work, screening of polymers viz. polyacrylic acid (PAA), polyvinyl pyrrolidone vinyl acetate (PVP VA), and hydroxypropyl methyl cellulose acetate succinate (HPMC AS) based on drug-polymer interaction and wetting property was done for the production of a stable amorphous solid dispersion (ASD) of a poorly water-soluble drug Riluzole (RLZ). PAA showed maximum interaction and wetting property hence, was selected for further studies. Solid state characterization studies confirmed the formation of ASD with PAA. Saturation solubility, dissolution profile, and in vivo pharmacokinetic data of the ASD formulation were generated in rats against its marketed tablet Rilutor. The RLZ:PAA ASD showed exponential enhancement in the dissolution of RLZ. Predicted and observed pharmacokinetic data in rats showed enhanced area under curve (AUC) and Cmax in plasma and brain with respect to Rilutor. Furthermore, a physiologically based pharmacokinetic (PBPK) model of rats for Rilutor and RLZ ASD was developed and then extrapolated to humans where physiological parameters were changed along with a biochemical parameter. The partition coefficient was kept similar in both species. The model was used to predict different exposure scenarios, and the simulated data was compared with observed data points. The PBPK model simulated Cmax and AUC was within two times the experimental data for plasma and brain. The Cmax and AUC in the brain increased with ASD compared to Rilutor for humans showing its potential in improving its biopharmaceutical performance and hence enhanced therapeutic efficacy. The model can predict the RLZ concentration in multiple compartments including plasma and liver.
Collapse
Affiliation(s)
- Kanchan Bharti
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Deepika Deepika
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
- Pere Virgili Health Research Institute (IISPV), Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Catalonia, Spain
| | - Manish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Abhishek Jha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Manjit
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Akhilesh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
- Pere Virgili Health Research Institute (IISPV), Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Catalonia, Spain
- German Federal Institute for Risk Assessment (BfR), Department of Pesticides Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
5
|
Moseson DE, Taylor LS. Crystallinity: A Complex Critical Quality Attribute of Amorphous Solid Dispersions. Mol Pharm 2023; 20:4802-4825. [PMID: 37699354 DOI: 10.1021/acs.molpharmaceut.3c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Does the performance of an amorphous solid dispersion rely on having 100% amorphous content? What specifications are appropriate for crystalline content within an amorphous solid dispersion (ASD) drug product? In this Perspective, the origin and significance of crystallinity within amorphous solid dispersions will be considered. Crystallinity can be found within an ASD from one of two pathways: (1) incomplete amorphization, or (2) crystal creation (nucleation and crystal growth). While nucleation and crystal growth is the more commonly considered pathway, where crystals originate as a physical stability failure upon accelerated or prolonged storage, manufacturing-based origins of crystallinity are possible as well. Detecting trace levels of crystallinity is a significant analytical challenge, and orthogonal methods should be employed to develop a holistic assessment of sample properties. Probing the impact of crystallinity on release performance which may translate to meaningful clinical significance is inherently challenging, requiring optimization of dissolution test variables to address the complexity of ASD formulations, in terms of drug physicochemical properties (e.g., crystallization tendency), level of crystallinity, crystal reference material selection, and formulation characteristics. The complexity of risk presented by crystallinity to product performance will be illuminated through several case studies, highlighting that a one-size-fits-all approach cannot be used to set specification limits, as the risk of crystallinity can vary widely based on a multitude of factors. Risk assessment considerations surrounding drug physicochemical properties, formulation fundamentals, physical stability, dissolution, and crystal micromeritic properties will be discussed.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Worldwide Research and Development Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Ueda K, Higashi K, Moribe K. Quantitative Analysis of Drug Supersaturation Region by Temperature-Variable Nuclear Magnetic Resonance Measurements, Part 2: Effects of Solubilizer. Mol Pharm 2023; 20:1872-1883. [PMID: 36939568 DOI: 10.1021/acs.molpharmaceut.3c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
This study utilized temperature-variable nuclear magnetic resonance (NMR) spectroscopy to investigate the effects of a solubilizing agent on the ketoprofen (KTP) supersaturation region. Quantitative NMR analysis showed that the solubilizing agent cetyltrimethylammonium bromide (CTAB) increased both the crystalline and amorphous solubilities of KTP, shifting the KTP supersaturation region to a higher KTP concentration range. The amorphous solubility of KTP was found to be independent of the enantiomeric composition of KTP, even in the presence of CTAB. However, the supersaturation region of the S-enantiomer of KTP (s-KTP) in CTAB solutions was smaller than that of the racemic form of KTP (rac-KTP), likely because of the higher crystalline solubility of s-KTP. When KTP formed a KTP-rich phase via liquid-liquid phase separation from KTP-supersaturated solutions, CTAB was observed to be distributed into the KTP-rich phase, decreasing the chemical potential of KTP and the maximum thermodynamic activity of KTP in the aqueous phase. Additionally, the incorporation of CTAB into the KTP-rich phase diminished the solubilization effect of CTAB micelles in the aqueous phase, narrowing the KTP supersaturation region to a greater extent at higher KTP dose concentrations. Furthermore, the upper-temperature limit of the supersaturated dissolvable region of KTP was lowered in the presence of CTAB, which was rationalized by the melting point depression of the KTP crystal upon mixing with CTAB. The findings of this study highlight the importance of considering the molecular-level impact of solubilizing agents on the drug supersaturation region to fully exploit the potential benefits of supersaturated formulations.
Collapse
Affiliation(s)
- Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
7
|
Ueda K, Higashi K, Moribe K. Quantitative Analysis of Drug Supersaturation Region by Temperature-Variable Nuclear Magnetic Resonance Measurements, Part 1: Effects of Polymer and Drug Chiralities. Mol Pharm 2023; 20:1861-1871. [PMID: 36939575 DOI: 10.1021/acs.molpharmaceut.2c00924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
We examined the effects of the polymer-additive and drug chiralities on the ketoprofen (KTP) supersaturation region using temperature-variable nuclear magnetic resonance (NMR). Quantitative NMR analysis revealed that the racemic KTP and corresponding S-enantiomer (rac- and s-KTP) exhibited similar amorphous solubilities in a buffer, while the crystalline solubility of s-KTP was higher than that of rac-KTP. Therefore, rac-KTP exhibited a larger supersaturation region than s-KTP. In contrast, polyvinylpyrrolidone (PVP) reduced the amorphous solubility of both rac- and s-KTP, whereas the crystalline solubility of KTP remained unchanged. Partitioning PVP into the KTP-rich phase reduced the chemical potential of KTP in the KTP-rich phase and the amorphous solubility of KTP. At higher temperatures, the distribution of PVP into the KTP-rich phase became more significant, which considerably reduced the amorphous solubility. Because the upper limit of the KTP supersaturation decreased, PVP narrowed the KTP supersaturation region. The maximum KTP supersaturation ratio decreased with increasing temperature, and the supersaturated dissolvable area of KTP finally disappeared. The maximum temperature at which KTP can form the supersaturation was lowered by replacing rac- with s-KTP and the addition of PVP. The maximum supersaturation temperature was dominated by the melting behavior of crystalline KTP in an aqueous solution. The present study highlighted that a quantitative understanding of the supersaturation region is essential to determine whether supersaturated formulations are beneficial for improving the oral absorption of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
8
|
Thermodynamic Correlation between Liquid-Liquid Phase Separation and Crystalline Solubility of Drug-Like Molecules. Pharmaceutics 2022; 14:pharmaceutics14122560. [PMID: 36559054 PMCID: PMC9782016 DOI: 10.3390/pharmaceutics14122560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The purpose of the present study was to experimentally confirm the thermodynamic correlation between the intrinsic liquid−liquid phase separation (LLPS) concentration (S0LLPS) and crystalline solubility (S0c) of drug-like molecules. Based on the thermodynamic principles, the crystalline solubility LLPS concentration melting point (Tm) equation (CLME) was derived (log10S0C=log10S0LLPS−0.0095Tm−310 for 310 K). The S0LLPS values of 31 drugs were newly measured by simple bulk phase pH-shift or solvent-shift precipitation tests coupled with laser-assisted visual turbidity detection. To ensure the precipitant was not made crystalline at <10 s, the precipitation tests were also performed under the polarized light microscope. The calculated and observed log10S0C values showed a good correlation (root mean squared error: 0.40 log unit, absolute average error: 0.32 log unit).
Collapse
|