1
|
Meng L, Fang J, Lin X, Zhuang R, Huang L, Li Y, Zhang X, Guo Z. Development of radioligands with an albumin-binding moiety of 4-(P-Iodophenyl) butyric acid for theranostic applications. J Control Release 2025; 382:113757. [PMID: 40262707 DOI: 10.1016/j.jconrel.2025.113757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
The rapid clearance of imaging probes from blood circulation is beneficial for receptor imaging, as it minimizes non-target tissue exposure and improves tumor-to-background contrast. However, this rapid clearance can hinder radioligand therapy by limiting tumor uptake of radiolabeled compounds. An optimal blood half-life is crucial, as it enhances the uptake of radiolabeled compounds in targets, improving tumor uptake and retention of small molecule drugs, and thus therapeutic outcomes. To address this, strategies to extend blood half-life have been developed, with the addition of an albumin-binding moiety (ABM) being particularly effective. Among these, 4-(p-iodophenyl)butyric acid (IPBA) has emerged as a versatile ABM for radiopharmaceutical design. IPBA conjugation has successfully enhanced tissue distribution profiles across various cancer types. This review highlights recent progress in the design, radiosynthesis, and application of IPBA-based small molecular radioligands, providing insights for future clinical development of IPBA-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Lingxin Meng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Jianyang Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xiaoru Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Rongqiang Zhuang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Lumei Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Yesen Li
- Department of Nuclear Medicine & Minnan PET Center, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Xianzhong Zhang
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Zhide Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China; Department of Nuclear Medicine & Minnan PET Center, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China.
| |
Collapse
|
2
|
Wang R, Huang M, Wang W, Li M, Wang Y, Tian R. Preclinical Evaluation of 68Ga/ 177Lu-Labeled FAP-Targeted Peptide for Tumor Radiopharmaceutical Imaging and Therapy. J Nucl Med 2025; 66:250-256. [PMID: 39848766 DOI: 10.2967/jnumed.124.268689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/09/2024] [Indexed: 01/25/2025] Open
Abstract
Fibroblast activation protein (FAP) has been considered a promising target for tumor imaging and therapy. This study designed a novel peptide, FAP-HXN, specifically targeting FAP and exhibiting significant potential as a radionuclide-labeled theranostic agent. Preclinical studies were conducted to evaluate the potency, selectivity, and efficacy of FAP-HXN. Methods: FAP-HXN was synthesized and characterized for selectivity and specificity toward FAP. Cellular uptake of the radiolabeled FAP-HXN in human embryonic kidney (HEK)-293-FAP cells with high expressions of FAP was evaluated. The diagnostic and therapeutic potential of 68Ga- and 177Lu-labeled radioligands was evaluated in HEK-293-FAP tumor-bearing mice compared with the FAP-targeting peptide FAP-2286. Results: FAP-HXN demonstrated high binding ability to human and mouse sources of FAP. Moreover, the in vivo studies confirmed the high affinity and specificity of radiolabeled FAP-HXN. Small-animal PET imaging demonstrated that [68Ga]Ga-FAP-HXN had continuous tumor uptake in FAP-positive tumors after administration compared with [68Ga]Ga-FAP-2286. In the therapeutic experiments, [177Lu]Lu-FAP-HXN showed significant antitumor activity in HEK-293-FAP xenografts at well-tolerated doses, which also exhibited longer tumor retention and better tumor growth inhibition compared with [177Lu]Lu-FAP-2286. Conclusion: The preclinical studies revealed that radiolabeled FAP-HXN had high tumor uptake, prolonged retention, and significant anticancer efficacy in HEK-293-FAP xenografts. FAP-HXN shows promising potential as a novel theranostic radioligand for FAP-positive tumors.
Collapse
Affiliation(s)
- Rang Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Mingxing Huang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Weichen Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Mufeng Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yingwei Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Hu M, Zhang C, Fan D, Yang R, Bai Y, Shi H. Advances in Preclinical Research of Theranostic Radiopharmaceuticals in Nuclear Medicine. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4337-4353. [PMID: 39800975 DOI: 10.1021/acsami.4c20602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Theranostics of nuclear medicine refers to the combination of radionuclide imaging and internal irradiation therapy, which is currently a research hotspot and an important direction for the future development of nuclear medicine. Radiopharmaceutical is a vital component of nuclear medicine and serves as one of the fundamental pillars of molecular imaging and precision medicine. At present, a variety of radiopharmaceuticals have been developed for various targets such as fibroblast activation protein (FAP), prostate-specific membrane antigen (PSMA), somatostatin receptor 2 (SSTR2), C-X-C motif chemokine receptor 4 (CXCR4), human epidermal growth factor-2 (HER2), and integrin αvβ3, and some of them have been successfully applied in clinical practice. The radiopharmaceutical with theranostic function plays an important role in the diagnosis, treatment, efficacy evaluation, and prognosis prediction of cancers and is the key to realize the personalized treatment of tumors. This Review summarizes the preclinical research progress of theranostic radiopharmaceuticals toward the above targets in the field of nuclear medicine and discusses the prospects and development directions of radiopharmaceuticals in the future.
Collapse
Affiliation(s)
- Mei Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Chenshuo Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Dandan Fan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Ru Yang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Yongxiang Bai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
4
|
Li Z, Ruan Q, Jiang Y, Wang Q, Yin G, Feng J, Zhang J. Current Status and Perspectives of Novel Radiopharmaceuticals with Heterologous Dual-targeted Functions: 2013-2023. J Med Chem 2024; 67:21644-21670. [PMID: 39648432 DOI: 10.1021/acs.jmedchem.4c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Radiotracers provide molecular- and cellular-level information in a noninvasive manner and have become important tools for precision medicine. In particular, the successful clinical application of radioligand therapeutic (RLT) has further strengthened the role of nuclear medicine in clinical treatment. The complicated microenvironment of the lesion has rendered traditional single-targeted radiopharmaceuticals incapable of fully meeting the requirements. The design and development of dual-targeted and multitargeted radiopharmaceuticals have rapidly emerged. In recent years, significant progress has been made in the development of heterologous dual-targeted radiopharmaceuticals. This perspective aims to provide a comprehensive overview of the recent progress in these heterologous dual-targeted radiopharmaceuticals, with a special focus on the design of ligand structures, pharmacological properties, and preclinical and clinical evaluation. Furthermore, future directions are discussed from this perspective.
Collapse
Affiliation(s)
- Zuojie Li
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qing Ruan
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Key Laboratory of Beam Technology of the Ministry of Education, College of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Key Laboratory of Beam Technology of the Ministry of Education, College of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qianna Wang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Guangxing Yin
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Junhong Feng
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
5
|
Yu Z, Jiang Z, Cheng X, Yuan L, Chen H, Ai L, Wu Z. Development of fibroblast activation protein-α radiopharmaceuticals: Recent advances and perspectives. Eur J Med Chem 2024; 277:116787. [PMID: 39197253 DOI: 10.1016/j.ejmech.2024.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Fibroblast activation protein-α (FAP) has emerged as a promising target in the field of radiopharmaceuticals due to its selective expression in cancer-associated fibroblasts (CAFs) and other pathological conditions involving fibrosis and inflammation. Recent advancements have focused on developing FAP-specific radioligands for diagnostic imaging and targeted radionuclide therapy. This perspective summarized the latest progress in FAP radiopharmaceutical development, highlighting novel radioligands, preclinical evaluations, and potential clinical applications. Additionally, we analyzed the advantages and existing problems of targeted FAP radiopharmaceuticals, and discussed the key breakthrough directions of this target, so as to improve the development and conversion of FAP-targeted radiopharmaceuticals.
Collapse
Affiliation(s)
- Ziyue Yu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Zeng Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Leilei Yuan
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Zehui Wu
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
6
|
Mo C, Sun P, Liang H, Chen Z, Wang M, Fu L, Huang S, Tang G. Synthesis and preclinical evaluation of a novel probe [ 18F]AlF-NOTA-IPB-GPC3P for PET imaging of GPC3 positive tumor. Bioorg Chem 2024; 147:107352. [PMID: 38640719 DOI: 10.1016/j.bioorg.2024.107352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/23/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
Glypican-3 (GPC3) is markedly overexpressed in hepatocellular carcinoma (HCC) and not expressed in normal liver tissues. In this study, a novel peptide PET imaging agent ([18F]AlF-NOTA-IPB-GPC3P) was developed to target GPC3 expressed in tumors. The overall radiochemical yield of [18F]AlF-NOTA-IPB-GPC3P was 10-15 %, and its lipophilicity, expressed as the logD value at a pH of 7.4, was -1.18 ± 0.06 (n = 3). Compared to the previously reported tracer [18F]AlF-GP2633, [18F]AlF-NOTA-IPB-GPC3P exhibited higher cellular uptake (15.13 vs 5.96) and internalized rate (80.63 % vs 35.93 %) in Huh7 cells at 120 min. Micro-PET/CT and biodistribution studies further demonstrated that [18F]AlF-NOTA-IPB-GPC3P exhibited significantly increased tumor uptake and prolonged tumor residence in Huh7 tumors compared to [18F]AlF-GP2633 (4.66 ± 0.22 % ID/g vs 0.72 ± 0.09 % ID/g at 60 min, p < 0.001; 5.05 ± 0.23 % ID/g vs 0.35 ± 0.08 % ID/g at 120 min, p < 0.001, respectively). Furthermore, the tumor-to-organ ratios of [18F]AlF-NOTA-IPB-GPC3P surpassed those of [18F]AlF-GP2633. Our results support the utilization of [18F]AlF-NOTA-IPB-GPC3P as a PET imaging agent targeting the GPC3 receptor for tumor detection.
Collapse
Affiliation(s)
- Chunwei Mo
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, Guangdong Province 510515, China
| | - Penghui Sun
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, Guangdong Province 510515, China
| | - Haoran Liang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, Guangdong Province 510515, China
| | - Zihao Chen
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, Guangdong Province 510515, China
| | - Meng Wang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, Guangdong Province 510515, China
| | - Lilan Fu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, Guangdong Province 510515, China
| | - Shun Huang
- Department of Nuclear Medicine, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China.
| | - Ganghua Tang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
7
|
Li T, Zhang J, Yan Y, Tan M, Chen Y. Applications of FAPI PET/CT in the diagnosis and treatment of breast and the most common gynecologic malignancies: a literature review. Front Oncol 2024; 14:1358070. [PMID: 38505595 PMCID: PMC10949888 DOI: 10.3389/fonc.2024.1358070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
The fibroblast activating protein (FAP) is expressed by some fibroblasts found in healthy tissues. However, FAP is overexpressed in more than 90% of epithelial tumors, including breast and gynecological tumors. As a result, the FAP ligand could be used as a target for diagnosis and treatment purposes. Positron emission tomography/computed tomography (PET/CT) is a hybrid imaging technique commonly used to locate and assess the tumor's molecular and metabolic functions. PET imaging involves the injection of a radiotracer that tends to accumulate more in metabolically active lesions such as cancer. Several radiotracers have been developed to target FAP in PET/CT imaging, such as the fibroblast-activation protein inhibitor (FAPI). These tracers bind to FAP with high specificity and affinity, allowing for the non-invasive detection and quantification of FAP expression in tumors. In this review, we discussed the applications of FAPI PET/CT in the diagnosis and treatment of breast and the most common gynecologic malignancies. Radiolabeled FAPI can improve the detection, staging, and assessment of treatment response in breast and the most common gynecologic malignancies, but the problem with normal hormone-responsive organs remains insurmountable. Compared to the diagnostic applications of FAPI, further research is needed for future therapeutic applications.
Collapse
Affiliation(s)
- Tengfei Li
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Jintao Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuanzhuo Yan
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Min Tan
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Yu Z, Huang Y, Chen H, Jiang Z, Li C, Xie Y, Li Z, Cheng X, Liu Y, Li S, Liang Y, Wu Z. Design, Synthesis, and Evaluation of 18F-Labeled Tracers Targeting Fibroblast Activation Protein for Brain Imaging. ACS Pharmacol Transl Sci 2023; 6:1745-1757. [PMID: 37974629 PMCID: PMC10644484 DOI: 10.1021/acsptsci.3c00187] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
Fibroblast activation protein (FAP) is closely related to central nervous system diseases such as stroke and brain tumors, but PET tracers that can be used for brain imaging have not been reported. Here, we designed, synthesized, and evaluated 18F-labeled UAMC1110 derivatives suitable for brain imaging targeting FAP. By substituting the F atom for the H atom on the aromatic ring of compound UAMC1110, 1a-c were designed and prepared. 1a-c were confirmed to have a high affinity for FAP through molecular docking and enzyme assay. [18F]1a-c were successfully prepared and confirmed to have high affinity. The stability in vivo indicates that no obvious metabolites of [18F]1a,b were found in the plasma 1 h after injection, which is beneficial for brain imaging. In vitro cell uptake experiments showed that [18F]1a,b and [68Ga]FAPI04 exhibited similar uptake and internalization rates. PET imaging of U87MG subcutaneous tumor showed that [18F]1a,b could penetrate the blood-brain barrier with higher uptake and longer retention time than [68Ga]FAPI04 (uptake at 62.5 min, 1.06 ± 0.23, 1.09 ± 0.25% ID/g vs 0.21 ± 0.10% ID/g, respectively). The brain-to-blood ratios of [18F]1a,b were better than [68Ga]FAPI04. Biodistribution and PET imaging showed that [18F]1a had better uptake on tumors and a higher tumor-to-muscle ratio than [18F]1b and [68Ga]FAPI04. Further imaging of U87MG intracranial glioma showed that [18F]1a outlined high-contrast gliomas in a short period of time compared to [18F]1b. Therefore, [18F]1a is expected to be useful in the diagnosis of FAP-related brain diseases.
Collapse
Affiliation(s)
- Ziyue Yu
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Yong Huang
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Hualong Chen
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Zeng Jiang
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Chengze Li
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Yi Xie
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Zhongjing Li
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Xuebo Cheng
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Yajing Liu
- School
of Pharmaceutical Science, Capital Medical
University, Beijing 100069, China
| | - Shengli Li
- Department
of Laboratory Animal Science, Capital Medical
University, Beijing 100069, China
| | - Ying Liang
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Zehui Wu
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
9
|
Xu M, Chen J, Zhang P, Cai J, Song H, Li Z, Liu Z. An antibody-radionuclide conjugate targets fibroblast activation protein for cancer therapy. Eur J Nucl Med Mol Imaging 2023; 50:3214-3224. [PMID: 37318538 DOI: 10.1007/s00259-023-06300-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE Fibroblast activation protein is one of the most attractive targets for tumor diagnosis and therapy. There have been many successful clinical translations with small molecules and peptides, yet only a few anti-FAP antibody diagnostic or therapeutic agents have been reported. Antibodies often feature good tumor selectivity and long tumor retention, which may be a better-match with therapeutic radionuclides (e.g.,177Lu, 225Ac) for cancer therapy. Here we report a 177Lu-labeled anti-FAP antibody, PKU525, as a therapeutic radiopharmaceutical for FAP-targeted radiotherapy. METHODS The anti-FAP antibody is produced as a derivative of sibrotuzumab. The pharmacokinetics and blocking study are performed with 89Zr-labeled antibody by PET imaging. The conjugation strategies have been screened and tested with SPECT imaging through 177Lu-labeling. The biodistribution and radiotherapy studies are performed on 177Lu-labeled anti-FAP antibody in NU/NU mice-bearing HT-1080-FAP tumors. RESULTS A multiple time-point PET imaging study shows that the tumor accumulation of [89Zr]Zr-DFO-PKU525 is intense, selective, and relatively rapid. The time activity curve indicates that the tumor uptake continually increases until reaches the highest uptake (SUVmax = 18.4 ± 2.3, n = 4) at 192 h, then gradually declines. Radioactivity rapidly cleared from the blood, liver, and other major organs, resulting in high tumor-to-background ratios. An in vivo blocking experiment suggests that [89Zr]Zr-DFO-PKU525 is FAP-specific and the uptake in FAP-negative tumors is almost negligible. Ex vivo biodistribution study shows that the tumor uptake of [177Lu]Lu-DOTA-NCS-PKU525 is 23.04 ± 5.11% ID/g, 33.2 ± 6.36% ID/g, 19.87 ± 6.84% ID/g and 19.02 ± 5.90% ID/g at 24 h, 96 h, 168 h, and 240 h after injection (n = 5), which is corroborated with the PET imaging. In therapeutic assays, multiple doses of [177Lu]Lu-DOTA-NCS-PKU525 have been tested in tumor-bearing mice, and the data suggests that 3.7 MBq may be sufficient to completely suppress the tumor growth in mice without showing observable side effects. CONCLUSION A FAP-targeted antibody-radionuclide conjugate was developed and evaluated in vitro and in vivo. Its tumor accumulation is rapid and high with a clean background. It remarkably suppresses the tumors in mice while the side effect is almost negligible, showing that it is promising for further clinical translational studies.
Collapse
Affiliation(s)
- Mengxin Xu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Pu Zhang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie Cai
- Boomray Pharmaceuticals (Beijing) Co., Ltd., Beijing, China
| | - Hanbo Song
- Changping Laboratory, Beijing, 102206, China
| | - Zhu Li
- Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
- Changping Laboratory, Beijing, 102206, China.
- Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Peking University-Tsinghua University Center for Life Sciences, Beijing, 100871, China.
| |
Collapse
|
10
|
Ora M, Soni N, Nazar AH, Dixit M, Singh R, Puri S, Graham MM, Gambhir S. Fibroblast Activation Protein Inhibitor-Based Radionuclide Therapies: Current Status and Future Directions. J Nucl Med 2023:jnumed.123.265594. [PMID: 37268422 DOI: 10.2967/jnumed.123.265594] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/30/2023] [Indexed: 06/04/2023] Open
Abstract
Metastatic malignancies have limited management strategies and variable treatment responses. Cancer cells develop beside and depend on the complex tumor microenvironment. Cancer-associated fibroblasts, with their complex interaction with tumor and immune cells, are involved in various steps of tumorigenesis, such as growth, invasion, metastasis, and treatment resistance. Prooncogenic cancer-associated fibroblasts emerged as attractive therapeutic targets. However, clinical trials have achieved suboptimal success. Fibroblast activation protein (FAP) inhibitor-based molecular imaging has shown encouraging results in cancer diagnosis, making them innovative targets for FAP inhibitor-based radionuclide therapies. This review summarizes the results of preclinical and clinical FAP-based radionuclide therapies. We will describe advances and FAP molecule modification in this novel therapy, as well as its dosimetry, safety profile, and efficacy. This summary may guide future research directions and optimize clinical decision-making in this emerging field.
Collapse
Affiliation(s)
- Manish Ora
- Department of Nuclear Medicine, SGPGIMS, Lucknow, India;
| | - Neetu Soni
- Department of Radiology, University of Rochester Medical Center, Rochester, New York
| | | | - Manish Dixit
- Department of Nuclear Medicine, SGPGIMS, Lucknow, India
| | - Rohit Singh
- Division of Hematology-Oncology, University of Vermont Medical Center, Burlington, Vermont; and
| | - Savita Puri
- Department of Radiology, University of Rochester Medical Center, Rochester, New York
| | - Michael M Graham
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Health Care, Iowa City, Iowa
| | | |
Collapse
|
11
|
Wieder R. Fibroblasts as Turned Agents in Cancer Progression. Cancers (Basel) 2023; 15:2014. [PMID: 37046676 PMCID: PMC10093070 DOI: 10.3390/cancers15072014] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Differentiated epithelial cells reside in the homeostatic microenvironment of the native organ stroma. The stroma supports their normal function, their G0 differentiated state, and their expansion/contraction through the various stages of the life cycle and physiologic functions of the host. When malignant transformation begins, the microenvironment tries to suppress and eliminate the transformed cells, while cancer cells, in turn, try to resist these suppressive efforts. The tumor microenvironment encompasses a large variety of cell types recruited by the tumor to perform different functions, among which fibroblasts are the most abundant. The dynamics of the mutual relationship change as the sides undertake an epic battle for control of the other. In the process, the cancer "wounds" the microenvironment through a variety of mechanisms and attracts distant mesenchymal stem cells to change their function from one attempting to suppress the cancer, to one that supports its growth, survival, and metastasis. Analogous reciprocal interactions occur as well between disseminated cancer cells and the metastatic microenvironment, where the microenvironment attempts to eliminate cancer cells or suppress their proliferation. However, the altered microenvironmental cells acquire novel characteristics that support malignant progression. Investigations have attempted to use these traits as targets of novel therapeutic approaches.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
12
|
Novel 68Ga-Labeled Pyridine-Based Fibroblast Activation Protein-Targeted Tracers with High Tumor-to-Background Contrast. Pharmaceuticals (Basel) 2023; 16:ph16030449. [PMID: 36986548 PMCID: PMC10057391 DOI: 10.3390/ph16030449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Compared to quinoline-based fibroblast activation protein (FAP)-targeted radiotracers, pyridine-based FAP-targeted tracers are expected to have faster pharmacokinetics due to their smaller molecular size and higher hydrophilicity, which we hypothesize would improve the tumor-to-background image contrast. We aim to develop 68Ga-labeled pyridine-based FAP-targeted tracers for cancer imaging with positron emission tomography (PET), and compare their imaging potential with the clinically validated [68Ga]Ga-FAPI-04. Two DOTA-conjugated pyridine-based AV02053 and AV02070 were synthesized through multi-step organic synthesis. IC50(FAP) values of Ga-AV02053 and Ga-AV02070 were determined by an enzymatic assay to be 187 ± 52.0 and 17.1 ± 4.60 nM, respectively. PET imaging and biodistribution studies were conducted in HEK293T:hFAP tumor-bearing mice at 1 h post-injection. The HEK293T:hFAP tumor xenografts were clearly visualized with good contrast on PET images by [68Ga]Ga-AV02053 and [68Ga]Ga-AV02070, and both tracers were excreted mainly through the renal pathway. The tumor uptake values of [68Ga]Ga-AV02070 (7.93 ± 1.88%ID/g) and [68Ga]Ga-AV02053 (5.6 ± 1.12%ID/g) were lower than that of previously reported [68Ga]Ga-FAPI-04 (12.5 ± 2.00%ID/g). However, both [68Ga]Ga-AV02070 and [68Ga]Ga-AV02053 showed higher tumor-to-background (blood, muscle, and bone) uptake ratios than [68Ga]Ga-FAPI-04. Our data suggests that pyridine-based pharmacophores are promising for the design of FAP-targeted tracers. Future optimization on the selection of a linker will be explored to increase tumor uptake while maintaining or even further improving the high tumor-to-background contrast.
Collapse
|