1
|
Li M, Zhu Q, Yang H, Hu Y, Zhao L, Zhao Y. Identification of key genes regulating brown adipose tissue thermogenesis in goat kids ( Capra hircus) by using weighted gene co-expression network analysis. Front Vet Sci 2025; 12:1525437. [PMID: 40438410 PMCID: PMC12116553 DOI: 10.3389/fvets.2025.1525437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 04/28/2025] [Indexed: 06/01/2025] Open
Abstract
Brown adipose tissue (BAT) is crucial for the maintenance of body temperature in newborn animals through non-shivering thermogenesis (NST). However, which kind key genes involved in the regulation of BAT thermogenesis and the internal regulation mechanism of heat production in goat BAT were still unclear. In this study, we analyzed the perirenal adipose tissue transcriptome of Dazu black goats from 0, 7, 14, 21 and 28 days after birth using weighted gene co-expression network analysis (WGCNA) to identify key genes involved in the thermogenesis of BAT. Genes were classified into 22 co-expression modules by WGCNA. The turquoise module exhibited high gene expression in D0, with generally lower expression in the later dates. This pattern is consistent with the rapid color, morphological, and thermogenic changes observed in perirenal adipose tissue shortly after birth. GO functional annotation revealed that the genes in the turquoise module were significantly enriched in the mitochondrion, mitochondrial protein-containing complex, cytoplasm, and mitochondrial inner membrane. KEGG pathway enrichment analysis indicated that these genes were predominantly enriched in the signaling pathways of oxidative phosphorylation, thermogenesis, and TCA cycle. By combining the gene co-expression network analysis of the turquoise module genes and the differentially expression genes (DEG) analysis, we identified 5 candidate key genes (ACO2, MRPS27, IMMT, MRPL12, and TUFM) involved in regulation of perirenal adipose tissue thermogenesis. This finding offer candidate genes that in the regulation of BAT thermogenesis and body temperature maintenance in goat kids.
Collapse
Affiliation(s)
| | | | | | | | - Le Zhao
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yongju Zhao
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Chilamakuri SN, N M, Thalla M, Velayutham R, Lee Y, Cho SM, Jung H, Natesan S. Role of Microneedles for Improved Treatment of Obesity: Progress and Challenges. Mol Pharm 2025; 22:2350-2371. [PMID: 40167034 DOI: 10.1021/acs.molpharmaceut.4c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Obesity is a global metabolic health epidemic characterized by excessive lipid and fat accumulation, leading to severe conditions such as diabetes, cancer, and cardiovascular disease. Immediate attention and management of obesity-related health risks are most warranted. The imbalance between fat absorption, metabolic rate, and environmental and genetic factors is responsible for obesity. Treatment typically involves lifestyle modifications, pharmacotherapy, and surgery. While lifestyle changes are crucial, effective treatment often necessitates medication as a preferred adjunct strategy. However, medications commonly used, such as oral pharmacotherapy, often show side effects due to systemic exposure and, thus, may not effectively target the intended areas, leading to drug loss. On the other hand, transdermal administration of drugs with microneedle (MN)-based technologies, a painless drug delivery approach with patient compliance, is gaining interest as an alternative obesity treatment, as it directly targets adipose tissue via local delivery, minimizing system exposure and dose reduction. This Review addresses the pathophysiology of obesity, current treatment strategies, challenges in the treatment of obesity using conventional formulations, the importance of the use of nano-based medications through transdermal delivery, and the use of MNs as a promising platform for the effective delivery of nanoparticle-based anti-obesity medications. The potential of combining MNs with stimuli-responsive and non-responsive adjuvant therapies to enhance treatment efficacy and patient outcomes is explored. In addition, the limitations and future perspectives related to the use of MNs for obesity are addressed to highlight the transformative potential of this technology for obesity management. MNs hold promise in precisely delivering anti-obesity drugs while requiring lower dosages and minimizing side effects compared to conventional oral or injectable therapies and ultimately improving the quality of life for individuals struggling with obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Sudarshan Naidu Chilamakuri
- Department of Pharmaceutics, Advance Formulation Laboratory, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, West Bengal, India
| | - Manasa N
- Department of Pharmaceutics, Advance Formulation Laboratory, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, West Bengal, India
| | - Maharshi Thalla
- Department of Pharmaceutical Sciences, Texas A&M University, Kingsville, Texas 78363, United States
| | - Ravichandiran Velayutham
- Department of Pharmaceutics, Advance Formulation Laboratory, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, West Bengal, India
| | - Youjin Lee
- Department of Integrative Biotechnology, Yonsei University, 85 Songdogwahak-ro, Incheon 21983, Republic of Korea
| | - Sung Min Cho
- Department of Integrative Biotechnology, Yonsei University, 85 Songdogwahak-ro, Incheon 21983, Republic of Korea
| | - Hyungil Jung
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 08389, Republic of Korea
- Department of Integrative Biotechnology, Yonsei University, 85 Songdogwahak-ro, Incheon 21983, Republic of Korea
| | - Subramanian Natesan
- Department of Pharmaceutics, Advance Formulation Laboratory, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, West Bengal, India
| |
Collapse
|
3
|
Yang Y, Luo L, Li Y, Shi X, Li C, Chai J, Jiang S, Zheng R. Succinic Acid Improves the Metabolism of High-Fat Diet-Induced Mice and Promotes White Adipose Browning. Nutrients 2024; 16:3828. [PMID: 39599615 PMCID: PMC11597198 DOI: 10.3390/nu16223828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Succinic acid plays a crucial role as an essential intermediate in the mitochondrial tricarboxylic acid cycle in mitochondria. In recent years, growing evidence has supported the the important role of succinic acid in fat metabolism. Therefore, we aimed to investigate the effects of succinic acid on adipose tissue metabolism and insulin sensitivity in high-fat diet (HFD)-induced obese mice and try to explore its potential mechanism. We found that the addition of succinic acid (40 mM) to drinking water inhibited the hypertrophy of inguinal white adipose tissue (iWAT) in HFD-induced mice. Furthermore, succinic acid supplementation enhanced insulin sensitivity and improved their glucose tolerance in obese mice. Interestingly, succinic acid supplementation improved lipid metabolism in HFD-fed mice, as shown by decreased serum levels of TG, TC, LDL-C, and increased HDL-C. In addition, succinic acid supplementation increased the expression of browning markers and mitochondria-related genes in iWAT. Further studies showed that the addition of succinic acid to drinking water promotes the browning of iWAT by activating the PI3K-AKT/MAPK signaling pathway. These results suggest that succinic acid has the potential to be used as an effective component for dietary intervention and may, therefore, play an important role in ameliorating and preventing obesity and associated metabolic diseases caused by HFD.
Collapse
Affiliation(s)
- Yuxuan Yang
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liang Luo
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yiqi Li
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiangda Shi
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chen Li
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jin Chai
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Siwen Jiang
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Rong Zheng
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
4
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
5
|
Yang C, Du Y, Zhao T, Zhao L, Liu L, Liu L, Yang X. Consumption of dietary turmeric promotes fat browning and thermogenesis in association with gut microbiota regulation in high-fat diet-fed mice. Food Funct 2024; 15:8153-8167. [PMID: 39011866 DOI: 10.1039/d4fo01489h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
This study was designed to verify the anti-obesity effect of dietary turmeric powder (TP) as a traditional cooking spice and its underlying mechanism. The HFD-fed C57BL/6J mice were supplemented with or without TP (8%) for 12 weeks. The results indicated that the glucolipid metabolism disorder of high-fat diet (HFD)-fed mice was significantly ameliorated through the supplementation of TP. The consumption of TP also induced beige-fat development and brown adipose tissue (BAT)-derived nonshivering thermogenesis in HFD-fed obese mice. 16S rDNA-based microbiota or targeted metabolomics analysis indicated that TP ameliorated the intestinal microbiota dysbiosis and microbial metabolism abnormality caused by HFD, reflected by dramatically increasing the relative abundance of Muribaculaceae, Candidatus_Saccharimonas, and Bifidobacterium and production of short-chain fatty acids (SCFAs) and succinate. Interestingly, TP-induced BAT thermogenesis and iWAT browning were highly correlated with the reconstruction of the gut microbiome and formation of SCFAs and succinate. Collectively, these findings manifest beneficial actions of TP on the promotion of adipose browning and thermogenesis in association with gut microbiota reconstruction, and our findings may provide a promising way for preventing obesity.
Collapse
Affiliation(s)
- Chengcheng Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Yao Du
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Tong Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Lu Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Lu Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Luyao Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
6
|
Sánchez-Trasviña C, Coronel-Meneses D, Escobar-Fernández AM, Mayolo-Deloisa K. Transdermal microneedle patches as a promising drug delivery system for anti-obesogenic molecules. Front Bioeng Biotechnol 2024; 12:1380537. [PMID: 38919379 PMCID: PMC11196754 DOI: 10.3389/fbioe.2024.1380537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Obesity, characterized by excessive storage of lipids, has become a global pandemic with high incidence levels, and its forecast is not encouraging. Currently, there are different strategies to treat obesity; however, these conventional methods have various limitations. Lifestyle changes may result in poor outcomes due to the complexity of obesity causes, pharmaceutic treatments produce severe side effects, and bariatric surgery is highly invasive. In the search for alternative treatments to fight obesity, transdermal drug delivery systems of anti-obesogenic molecules have gained particular attention. However, the diffusion of molecules through the skin is the main drawback due to the characteristics of different layers of the skin, principally the stratum corneum and its barrier-like behavior. In this sense, microneedles patches (MP) have emerged to overcome this limitation by piercing the skin and allowing drug delivery inside the body. Although MP have been studied for some years, it was not until about 2017 that their potential as anti-obesogenic treatment was reported. This article aims to summarize and analyze the strategies employed to produce MP and to embed the active molecules against obesity. Special attention is focused on the microneedle's material, geometry, array, and additional delivery strategies, like nanoencapsulation. MP are a promising tool to develop an easy-access treatment, avoiding the digestive tract and with the capacity to enhance the anti-obesogenic activity by delivering one or more active molecules.
Collapse
Affiliation(s)
- Calef Sánchez-Trasviña
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, NL, Mexico
| | - David Coronel-Meneses
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, NL, Mexico
| | - Aleyda Margarita Escobar-Fernández
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, NL, Mexico
| | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, NL, Mexico
| |
Collapse
|
7
|
Reddy A, Winther S, Tran N, Xiao H, Jakob J, Garrity R, Smith A, Ordonez M, Laznik-Bogoslavski D, Rothstein JD, Mills EL, Chouchani ET. Monocarboxylate transporters facilitate succinate uptake into brown adipocytes. Nat Metab 2024; 6:567-577. [PMID: 38378996 DOI: 10.1038/s42255-024-00981-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
Uptake of circulating succinate by brown adipose tissue (BAT) and beige fat elevates whole-body energy expenditure, counteracts obesity and antagonizes systemic tissue inflammation in mice. The plasma membrane transporters that facilitate succinate uptake in these adipocytes remain undefined. Here we elucidate a mechanism underlying succinate import into BAT via monocarboxylate transporters (MCTs). We show that succinate transport is strongly dependent on the proportion that is present in the monocarboxylate form. MCTs facilitate monocarboxylate succinate uptake, which is promoted by alkalinization of the cytosol driven by adrenoreceptor stimulation. In brown adipocytes, we show that MCT1 primarily facilitates succinate import. In male mice, we show that both acute pharmacological inhibition of MCT1 and congenital depletion of MCT1 decrease succinate uptake into BAT and consequent catabolism. In sum, we define a mechanism of succinate uptake in BAT that underlies its protective activity in mouse models of metabolic disease.
Collapse
Affiliation(s)
- Anita Reddy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Sally Winther
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Nhien Tran
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Josefine Jakob
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ryan Garrity
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Arianne Smith
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martha Ordonez
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Jeffrey D Rothstein
- Brain Science Institute, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Evanna L Mills
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Xiao M, Wang Z, Li C, Zhang K, Hou Z, Sun S, Yang L. Recent advances in drug delivery systems based on natural and synthetic polymes for treating obesity. Int J Biol Macromol 2024; 260:129311. [PMID: 38218268 DOI: 10.1016/j.ijbiomac.2024.129311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Obesity stands as a pervasive global public health issue, posing a formidable threat to human well-being as its prevalence continues to surge year by year. Presently, pharmacological treatment remains the favored adjunct strategy for addressing obesity. However, conventional delivery methods suffer from low bioavailability and the potential for side effects, underscoring the pressing need for more efficient and targeted delivery approaches. Recent research has delved extensively into emerging drug delivery systems employing polymers as carriers, with numerous preclinical studies contributing to the growing body of knowledge. This review concentrates on the utilization of natural polymers as drug delivery systems for the treatment of obesity, encompassing recent advancements in both natural and synthetic polymers. The comprehensive exploration includes an analysis of the advantages and disadvantages associated with these polymer carriers. The examination of these characteristics provides valuable insights into potential future developments in the field of drug delivery for obesity treatment.
Collapse
Affiliation(s)
- Miaomiao Xiao
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China; College of Exercise and Health, Shenyang Sport University, Shenyang 110102, PR China
| | - Zongheng Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, PR China
| | - Chang Li
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, PR China
| | - Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Siyu Sun
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China; Liaoning Research Institute for Eugenic Birth & Fertility, China Medical University, Shenyang, 110031, P.R.China.
| |
Collapse
|
9
|
Gopan G, Jose J, Khot KB, Bandiwadekar A. The use of cellulose, chitosan and hyaluronic acid in transdermal therapeutic management of obesity: A review. Int J Biol Macromol 2023:125374. [PMID: 37330096 DOI: 10.1016/j.ijbiomac.2023.125374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Obesity is a clinical condition with rising popularity and detrimental impacts on human health. According to the World Health Organization, obesity is the sixth most common cause of death worldwide. It is challenging to combat obesity because medications that are successful in the clinical investigation have harmful side effects when administered orally. The conventional approaches for treating obesity primarily entail synthetic compounds and surgical techniques but possess severe adverse effects and recurrences. As a result, a safe and effective strategy to combat obesity must be initiated. Recent studies have shown that biological macromolecules of the carbohydrate class, such as cellulose, hyaluronic acid, and chitosan, can enhance the release and efficacy of medications for obesity but due to their short biological half-lives and poor oral bioavailability, their distribution rate is affected. This helps to comprehend the need for an effective therapeutic approach via a transdermal drug delivery system. This review focuses on the transdermal administration, utilizing cellulose, chitosan, and hyaluronic acid via microneedles, as it offers a promising solution to overcome existing therapy limitations in managing obesity and it also highlights how microneedles can effectively deliver therapeutic substances through the skin's outer layer, bypassing pain receptors and specifically targeting adipose tissue.
Collapse
Affiliation(s)
- Gopika Gopan
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| | - Kartik Bhairu Khot
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Akshay Bandiwadekar
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| |
Collapse
|
10
|
Som R, Fink BD, Yu L, Sivitz WI. Oxaloacetate regulates complex II respiration in brown fat: dependence on UCP1 expression. Am J Physiol Cell Physiol 2023; 324:C1236-C1248. [PMID: 37125774 PMCID: PMC10243537 DOI: 10.1152/ajpcell.00565.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
We previously found that skeletal muscle mitochondria incubated at low membrane potential (ΔΨ) or interscapular brown adipose tissue (IBAT) mitochondria, wherein ΔΨ is intrinsically low, accumulate oxaloacetate (OAA) in amounts sufficient to inhibit complex II respiration. We proposed a mechanism wherein low ΔΨ reduces reverse electron transport (RET) to complex I causing a low NADH/NAD+ ratio favoring malate conversion to OAA. To further assess the mechanism and its physiologic relevance, we carried out studies of mice with inherently different levels of IBAT mitochondrial inner membrane potential. Isolated complex II (succinate)-energized IBAT mitochondria from obesity-resistant 129SVE mice compared with obesity-prone C57BL/6J displayed greater UCP1 expression, similar O2 flux despite lower ΔΨ, similar OAA concentrations, and similar NADH/NAD+. When GDP was added to inhibit UCP1, 129SVE IBAT mitochondria, despite their lower ΔΨ, exhibited much lower respiration, twofold greater OAA concentrations, much lower RET (as marked by ROS), and much lower NADH and NADH/NAD+ ratios compared with the C57BL/6J IBAT mitochondria. UCP1 knock-out abolished OAA accumulation by succinate-energized mitochondria associated with markedly greater ΔΨ, ROS, and NADH, but equal or greater O2 flux compared with WT mitochondria. GDP addition, compared with no GDP, increased ΔΨ and complex II respiration in wild-type (WT) mice associated with much less OAA. Respiration on complex I substrates followed the more classical dynamics of greater respiration at lower ΔΨ. These findings support the abovementioned mechanism for OAA- and ΔΨ-dependent complex II respiration and support its physiological relevance.NEW & NOTEWORTHY We examined mitochondrial respiration initiated at mitochondrial complex II in mice with varying degrees of brown adipose tissue UCP1 expression. We show that, by affecting inner membrane potential, UCP1 expression determines reverse electron transport from complex II to complex I and, consequently, the NADH/NAD+ ratio. Accordingly, this regulates the level of oxaloacetate accumulation and the extent of oxaloacetate inhibition of complex II.
Collapse
Affiliation(s)
- Ritu Som
- Department of Internal Medicine/Endocrinology and Metabolism, University of Iowa and the Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, United States
| | - Brian D Fink
- Department of Internal Medicine/Endocrinology and Metabolism, University of Iowa and the Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, United States
| | - Liping Yu
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa, United States
- Carver College of Medicine NMR Core Facility, University of Iowa, Iowa City, Iowa, United States
| | - William I Sivitz
- Department of Internal Medicine/Endocrinology and Metabolism, University of Iowa and the Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, United States
| |
Collapse
|