1
|
Jiang Y, Wang Z, Li W, Ma T, Li M, Wu S, Lin E, Flader KE, Ma M, Chang M, Li H, Wang W, Lu J. Enhanced delivery of camptothecin to colorectal carcinoma using a tumor-penetrating peptide targeting p32. Acta Biomater 2025:S1742-7061(25)00361-7. [PMID: 40379119 DOI: 10.1016/j.actbio.2025.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/04/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Camptothesome, a sphingomyelin (SM)-conjugated camptothecin (CPT) vesicular nanotherapeutic, addresses the poor solubility and lactone instability of CPT while enhancing drug loading, pharmacokinetics, and tumor distribution compared to CPT physically entrapped in conventional liposomes. Despite these improvements, the tumor uptake remains limited. To further enhance the tumor delivery efficiency and minimize the off-target distribution, we functionalize Camptothesome with the LinTT1 peptide, a CendR motif, which binds to overexpressed p32 proteins on tumor cell surface, initiating effective transcytosis for deep tumor penetration. Via systematic screening, the optimal peptide ratio on Camptothesome is identified. LinTT1/Camptothesome significantly increases cancer cell uptake without affecting normal cell internalization, resulting in enhanced anti-colorectal cancer cells activity. Additionally, decorating Camptothesome with the LinTT1 cell-penetrating peptide enables effective transcytosis via a Golgi-dependent intracellular trafficking mechanism, significantly improving the intratumoral delivery while reducing distribution to normal tissues. In a human HCT116 xenograft colorectal cancer (CRC) mouse model, LinTT1/Camptothesome demonstrates superior antitumor efficacy compared to both Camptothesome and Onivyde by upregulating cleaved caspase-3 and γH2AX. Our study substantiates the potential of leveraging a tumor-penetrating peptide to enhance the tumor delivery efficiency of Camptothesome, maximizing its therapeutic index for improved treatment of human CRC. STATEMENT OF SIGNIFICANCE: Despite the improved tumor delivery achieved by Camptothesome, its tumor distribution and penetration remain limited. This is because the enhanced permeability and retention effect only facilitates nanotherapeutic distribution to tumor periphery through leaky vasculature. The C-end Rule (CendR) motif-neuropilin receptor system enhances tumor-homing peptides by binding to cellular surface receptors, triggering transcytosis. Herein, LinTT1, the most potent CendR peptide that binds to the overexpressed p32 receptor on cancer cells, was effectively engineered onto Camptothesome using thiol-maleimide lipid chemistry. The LinTT1/Camptothesome significantly enhanced tumor uptake and penetration while minimizing accumulation in normal tissues, demonstrating remarkable anticancer efficacy in a human xenograft colorectal cancer model. Our findings highlight the critical role of tumor-homing peptides in unlocking the full therapeutic potential of Camptothesome.
Collapse
Affiliation(s)
- Yanhao Jiang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Zhiren Wang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Teng Ma
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Mengwen Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Shuang Wu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Ethan Lin
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Karlie Elizabeth Flader
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Mengjiao Ma
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Mengyang Chang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Hongmin Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Wei Wang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States; Clinical and Translational Oncology Program, The University of Arizona Cancer Center, Tucson, AZ 85721, United States; BIO5 Institute, The University of Arizona, Tucson, AZ 85721, United States; Southwest Environmental Health Sciences Center, The University of Arizona, Tucson 85721, United States.
| |
Collapse
|
2
|
Wang Y, Yang R, Xie Y, Zhou XQ, Yang JF, Shi YY, Liu S. Comprehensive review of drug-mediated ICD inhibition of breast cancer: mechanism, status, and prospects. Clin Exp Med 2024; 24:230. [PMID: 39325106 PMCID: PMC11427550 DOI: 10.1007/s10238-024-01482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024]
Abstract
The escalating incidence of breast cancer (BC) in women underscores its grave health threat. Current molecular insights into BC's post-adjuvant therapy cure remain elusive, necessitating active treatment explorations. Immunotherapy, notably chemotherapy-induced immunogenic cell death (ICD), has emerged as a promising BC therapy. ICD harnesses chemotherapeutics to activate anti-tumor immunity via DAMPs, fostering long-term T-cell memory and primary BC cure. Besides chemotherapy drugs, Nanodrugs, traditional Chinese medicine (TCM) and ICIs also induce ICD, boosting immune response. ICIs, like PD-1/PD-L1 inhibitors, revolutionize cancer treatment but face limited success in cold tumors. Thus, ICD induction combined with ICIs is studied extensively for BC immunotherapy. This article reviews the mechanism of ICD related drugs in BC and provides reference for the research and development of BC treatment, in order to explore more effective clinical treatment of BC, we hope to explore more ICD inducers and make ICIs more effective vaccines.
Collapse
Affiliation(s)
- Yang Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
- China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Rui Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
- Shanxi Province Cancer Hospital/Shanxi Hospital Afiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital, Afiliated to Shanxi Medical University, 030013, Shanxi, China
| | - Ying Xie
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
| | - Xi-Qiu Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
| | - Jian-Feng Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| | - You-Yang Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| | - Sheng Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
- Graduate School, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| |
Collapse
|
3
|
Zou Y, Wan X, Ding Z, Tang C, Wang C, Chen X. Design, synthesis, and biological studies of nitric oxide-donating piperlongumine derivatives triggered by lysyl oxidase as anti-triple negative breast cancer agents. Fitoterapia 2024; 177:106091. [PMID: 38908760 DOI: 10.1016/j.fitote.2024.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Nitric oxide (NO) is an important gas messenger molecule with a wide range of biological functions. High concentration of NO exerts promising antitumor effects and is regarded as one of the hot spots in cancer research, that have limitations in their direct application due to its gaseous state, short half-life (seconds) and high reactivity. Lysyl oxidase (LOX) is a copper-dependent amine oxidase that is responsible for the covalent bonding between collagen and elastin and promotes tumor cell invasion and metastasis. The overexpression of LOX in triple-negative breast cancer (TNBC) makes it an attractive target for TNBC therapy. Herein, novel NO donor prodrug molecules were designed and synthesized based on the naturally derived piperlongumine (PL) skeleton, which can be selectively activated by LOX to release high concentrations of NO and PL derivatives, both of them play a synergistic role in TNBC therapy. Among them, the compound TM-1 selectively released NO in highly invasive TNBC cells (MDA-MB-231), and TM-1 was also confirmed as a potential TNBC cell line inhibitor with an inhibitory concentration of 2.274 μM. Molecular docking results showed that TM-1 had a strong and selective binding affinity with LOX protein.
Collapse
Affiliation(s)
- Yu Zou
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xin Wan
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zedan Ding
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chunyang Tang
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chuan Wang
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xia Chen
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
4
|
Yang LJ, Han T, Liu RN, Shi SM, Luan SY, Meng SN. Plant-derived natural compounds: A new frontier in inducing immunogenic cell death for cancer treatment. Biomed Pharmacother 2024; 177:117099. [PMID: 38981240 DOI: 10.1016/j.biopha.2024.117099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
Immunogenic cell death (ICD) can activate adaptive immune response in the host with normal immune system. Some synthetic chemotherapeutic drugs and natural compounds have shown promising results in cancer treatment by triggering the release of damage-associated molecules (DAMPs) to trigger ICD. However, most chemotherapeutic drugs exhibit non-selective cytotoxicity and may also induce and promote metastasis, thereby significantly reducing their clinical efficacy. Among the natural compounds that can induce ICD, plant-derived compounds account for the largest proportion, which are of increasing value in the treatment of cancer. Understanding which plant-derived natural compounds can induce ICD and how they induce ICD is crucial for developing strategies to improve chemotherapy outcomes. In this review, we focus on the recent findings regarding plant-derived natural compounds that induce ICD according to the classification of flavonoids, alkaloids, glycosides, terpenoids and discuss the potential mechanisms including endoplasmic reticulum (ER) stress, DNA damage, apoptosis, necroptosis autophagy, ferroptosis. In addition, plant-derived natural compounds that can enhance the ICD induction ability of conventional therapies for cancer treatment is also elaborated. The rational use of plant-derived natural compounds to induce ICD is helpful for the development of new cancer treatment methods.
Collapse
Affiliation(s)
- Li-Juan Yang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Ting Han
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Ruo-Nan Liu
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Shu-Ming Shi
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Shi-Yun Luan
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Sheng-Nan Meng
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
5
|
Jia N, Wang Q, Li W, Chen D, Hu H. Membrane Fusion Liposomes Deliver Antifibrotic and Chemotherapeutic Drugs Sequentially to Enhance Tumor Treatment Efficacy by Reshaping Tumor Microenvironment. Adv Healthc Mater 2024; 13:e2400219. [PMID: 38657266 DOI: 10.1002/adhm.202400219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/14/2024] [Indexed: 04/26/2024]
Abstract
The intricate tumor microenvironment in triple-negative breast cancer (TNBC) hampers chemotherapy and immunotherapy efficacy due to dense extracellular matrix (ECM) by tumor-associated fibroblasts (TAFs). Nanoparticle-based therapies, especially "all-in-one" nanoparticles, have shown great potential in combined drug delivery strategies to reshape the tumor microenvironment and enhance therapeutic efficiency. However, these "all-in-one" nanoparticles suffer from limitations in targeting different target cells, uncontrollable dosing ratio, and disregarding the impact of delivery schedules. This study prepared cell membrane fusion liposomes (TAFsomes and CCMsomes) to load FDA-approved antifibrotic drug pirfenidone (PFD/TAFsomes) and antitumor drug doxorubicin (DOX/CCMsomes). These liposomes can specifically target TAFs cells and tumor cells, and combined administration can effectively inhibit TAFs activity, reshape the tumor microenvironment (TME), and significantly enhance the tumor chemotherapy efficacy. Combined drug delivery defeats "all-in-one" liposomes (DOX/PFD/Liposomes, DOX/PFD/TAFsomes, and DOX/PFD/CCMsomes) by flexibly adjusting the drug delivery ratio. Moreover, an asynchronous delivery strategy that optimizes the administration schedule not only further improves the therapeutic effect, but also amplifies the effectiveness of α-PD-L1 immunotherapy by modulating the tumor immune microenvironment. This delivery strategy provides a personalized treatment approach with clinical translation potential, providing new ideas for enhancing the therapeutic effect against solid tumors such as TNBC.
Collapse
Affiliation(s)
- Nan Jia
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Qi Wang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Wenpan Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| |
Collapse
|
6
|
Linde C, Chien YT, Chen Z, Mu Q. Nanoparticle-enhanced PD-1/PD-L1 targeted combination therapy for triple negative breast cancer. Front Oncol 2024; 14:1393492. [PMID: 38756653 PMCID: PMC11096478 DOI: 10.3389/fonc.2024.1393492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Breast cancer with triple-negative subtype (TNBC) presents significant challenges with limited treatment options and a poorer prognosis than others. While PD-1/PD-L1 checkpoint inhibitors have shown promise, their efficacy in TNBC remains constrained. In recent years, nanoparticle (NP) technologies offer a novel approach to enhance cancer therapy by optimizing the tumor microenvironment and augmenting chemo- and immunotherapy effects in various preclinical and clinical settings. This review discusses recent investigations in NP strategies for improving PD-1/PD-L1 blockade-based combination therapy for TNBC. Those include single or multi-therapeutic NPs designed to enhance immunogenicity of the tumor, induce immunogenic cell death, and target immunosuppressive elements within the tumor microenvironment. The investigations also include NPs co-loaded with PD-L1 inhibitors and other therapeutic agents, leveraging targeted delivery and synergistic effects to maximize efficacy while minimizing systemic toxicity. Overall, NP approaches represent a promising avenue for enhancing PD-1/PD-L1 checkpoint blockade-based combination therapy in TNBC and encourage further developmental studies.
Collapse
Affiliation(s)
| | | | | | - Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Wang Z, Li W, Jiang Y, Tran TB, Chung J, Kim M, Scott AJ, Lu J. Camptothesome-based combination nanotherapeutic regimen for improved colorectal cancer immunochemotherapy. Biomaterials 2024; 306:122477. [PMID: 38309054 PMCID: PMC10922823 DOI: 10.1016/j.biomaterials.2024.122477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
Camptothesome is a sphingomyelin-conjugated camptothecin (SM-CSS-CPT) nanovesicle that fortified the therapeutic delivery of CPT in diverse cancer types. To mitigate the Camptothesome-induced IDO1 negative feedback mechanism, we had co-encapsulated, indoximod (IND, IDO1 inhibitor) into Camptothesome using doxorubicin-derived IND (DOX-IND). To maximize the therapeutic potential of DOX-IND/Camptothesome, herein, we first dissected the synergistic drug ratio (DOX-IND/SM-CSS-CPT) via systematical in vitro screening. DOX-IND/Camptothesome with optimal drug ratio synchronized in vivo drug delivery with significantly higher tumor uptake compared to free drugs. This optimum DOX-IND/Camptothesome outperformed the combination of Camptothesome, Doxil and IND or other IDO1 inhibitors (BMS-986205 or epacadostat) in treating mice bearing late-stage MC38 tumors, and combination with immune checkpoint blockade (ICB) enabled it to eradicate 60 % of large tumors. Further, this optimized co-delivery Camptothesome beat Folfox and Folfiri, two first-line combination chemotherapies for colorectal cancer in antitumor efficacy and exhibited no side effects as compared to the severe systemic toxicities associated with Folfox and Folfiri. Finally, we demonstrated that the synergistic DOX-IND/Camptothesome was superior to the combined use of Onivyde + Doxil + IND in curbing the advanced orthotopic CT26-Luc tumors and eliminated 40 % tumors with complete metastasis remission when cooperated with ICB, eliciting stronger anti-CRC immune responses and greater reversal of immunosuppression. These results corroborated that with precise optimal synergistic drug ratio, the therapeutic potential of DOX-IND/Camptothesome can be fully unleased, which warrants further clinical investigation to benefit the cancer patients.
Collapse
Affiliation(s)
- Zhiren Wang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
| | - Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
| | - Yanhao Jiang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
| | - Tuyen Ba Tran
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
| | - Jinha Chung
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
| | - Minhyeok Kim
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
| | - Aaron James Scott
- Clinical and Translational Oncology Program, The University of Arizona Cancer Center, Tucson, AZ, 85721, United States; BIO5 Institute, The University of Arizona, Tucson, AZ, 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States; BIO5 Institute, The University of Arizona, Tucson, AZ, 85721, United States; Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ 85721, United States; Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, United States.
| |
Collapse
|
8
|
Kong S, Liu Q, Chen Y, Liang B, Zhou Y, Lin J, Xie M, Qiu L. Multifunctional Probe Based on "Chemical Antibody-Aptamer" for Noninvasive Detection of PD-L1 Expression in Cancer. Mol Pharm 2024; 21:255-266. [PMID: 38093483 DOI: 10.1021/acs.molpharmaceut.3c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2024]
Abstract
Immune checkpoint inhibitors (ICIs) therapy based on programmed cell death ligand 1 (PD-L1) has shown significant development in treating several carcinomas, but not all patients respond to this therapy due to the heterogeneity of PD-L1 expression. The sensitive and accurate quantitative analysis of in vivo PD-L1 expression is critical for treatment decisions and monitoring therapy. In the present study, an aptamer-based dual-modality positron emission tomography/near-infrared fluorescence (PET/NIRF) imaging probe was developed, and its specificity and sensitivity to PD-L1 were assessed in vitro and in vivo. The probe precursor NOTA-Cy5-R1 was prepared by using automated solid-phase oligonucleotide synthesis. PET/NIRF dual-modality probe [68Ga]Ga-NOTA-Cy5-R1 was successfully synthesized and radiolabeled. The binding specificity of [68Ga]Ga-NOTA-Cy5-R1 to PD-L1 was evaluated by flow cytometry, fluorescence imaging, and cellular uptake in A375-hPD-L1 and A375 cells, and it showed good fluorescence properties and stability in vitro. In vivo PET/NIRF imaging studies illustrated that [68Ga]Ga-NOTA-Cy5-R1 can sensitively and specifically bind to PD-L1 positive tumors. Meanwhile, the rapid clearance of probes from nontarget tissues achieved a high signal-to-noise ratio. In addition, changes of PD-L1 expression in NCI-H1299 xenografts treated with cisplatin (CDDP) were sensitivity monitored by [68Ga]Ga-NOTA-Cy5-R1 PET imaging, and ex vivo autoradiography and western blot analyses correlated well with the change of PD-L1 expression in vivo. Overall, [68Ga]Ga-NOTA-Cy5-R1 showed notable potency as a dual-modality PET/NIRF imaging probe for visualizing tumors and monitoring the dynamic changes of PD-L1 expression, which can help to direct and promote the clinical practice of ICIs therapy.
Collapse
Affiliation(s)
- Sudong Kong
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Yinfei Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Beibei Liang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Yuxuan Zhou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Minhao Xie
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Ling Qiu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| |
Collapse
|
9
|
Huang J, Wang K, Wu S, Zhang J, Chen X, Lei S, Wu J, Men K, Duan X. Tumor Cell Lysate-Based Multifunctional Nanoparticles Facilitate Enhanced mRNA Delivery and Immune Stimulation for Melanoma Gene Therapy. Mol Pharm 2024; 21:267-282. [PMID: 38079527 DOI: 10.1021/acs.molpharmaceut.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2024]
Abstract
Messenger ribonucleic acid (mRNA)-based gene therapy has great potential for cancer gene therapy. However, the effectiveness of mRNA in cancer therapy needs to be further improved, and the delivery efficiency and instability of mRNA limit the application of mRNA-based products. Both the delivery efficiency can be elevated by cell-penetrating peptide modification, and the immune response can be enhanced by tumor cell lysate stimulation, representing an advantageous strategy to expand the effectiveness of mRNA gene therapy. Therefore, it is vital to exploit a vector that can deliver high-efficiency mRNA with codelivery of tumor cell lysate to induce specific immune responses. We previously reported that DMP cationic nanoparticles, formed by the self-assembly of DOTAP and mPEG-PCL, can deliver different types of nucleic acids. DMP has been successfully applied in gene therapy research for various tumor types. Here, we encapsulated tumor cell lysates with DMP nanoparticles and then modified them with a fused cell-penetrating peptide (TAT-iRGD) to form an MLSV system. The MLSV system was loaded with encoded Bim mRNA, forming the MLSV/Bim complex. The average size of the synthesized MLSV was 191.4 nm, with a potential of 47.8 mV. The MLSV/mRNA complex promotes mRNA absorption through caveolin-mediated endocytosis, with a transfection rate of up to 68.6% in B16 cells. The MLSV system could also induce the maturation and activation of dendritic cells, obviously promoting the expression of CD80, CD86, and MHC-II both in vitro and in vivo. By loading the encoding Bim mRNA, the MLSV/Bim complex can inhibit cell proliferation and tumor growth, with inhibition rates of up to 87.3% in vitro. Similarly, the MLSV/Bim complex can inhibit tumor growth in vivo, with inhibition rates of up to 78.7% in the B16 subcutaneous tumor model and 63.3% in the B16 pulmonary metastatic tumor model. Our results suggest that the MLSV system is an advanced candidate for mRNA-based immunogene therapy.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shan Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiayu Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
10
|
Wang Z, Gonzalez KM, Cordova LE, Lu J. Nanotechnology-empowered therapeutics targeting neurodegenerative diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1907. [PMID: 37248794 PMCID: PMC10525015 DOI: 10.1002/wnan.1907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 04/15/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023]
Abstract
Neurodegenerative diseases are posing pressing health issues due to the high prevalence among aging populations in the 21st century. They are evidenced by the progressive loss of neuronal function, often associated with neuronal necrosis and many related devastating complications. Nevertheless, effective therapeutical strategies to treat neurodegenerative diseases remain a tremendous challenge due to the multisystemic nature and limited drug delivery to the central nervous system. As a result, there is a pressing need to develop effective alternative therapeutics to manage the progression of neurodegenerative diseases. By utilizing the functional reconstructive materials and technologies with specific targeting ability at the nanoscale level, nanotechnology-empowered medicines can transform the therapeutic paradigms of neurodegenerative diseases with minimal systemic side effects. This review outlines the current applications and progresses of the nanotechnology-enabled drug delivery systems to enhance the therapeutic efficacy in treating neurodegenerative diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Zhiren Wang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Karina Marie Gonzalez
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Leyla Estrella Cordova
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
- BIO5 Institute, The University of Arizona, Tucson, Arizona, 85721, United States
- Clinical and Translational Oncology Program, The University of Arizona Cancer Center, Tucson, Arizona, 85721, United States
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, United States
| |
Collapse
|