1
|
Han D, Ji L, Lu M, Li D, Sheng X, Zhang J, Wang C. Pickering emulsion stabilized by egg derived reconstituted lipid nanoparticles for encapsulation and oral delivery of curcumin. Food Chem 2025; 472:142912. [PMID: 39827552 DOI: 10.1016/j.foodchem.2025.142912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/26/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
The demand for high-quality, nutritious, and sustainable food products has led to a significant interest in the development of durable and effective emulsions. Pickering emulsions are promising candidates but the currently adopted stabilizers still have limitations. Here in this study, we introduce a novel egg derived reconstituted lipid nanoparticles (E-rLNPs) as stabilizer for Pickering emulsions. The lipids extraction from de-oiled egg yolk powder was firstly optimized using response surface methodology by Box-Behnken Design and then prepared into E-rLNPs by a straightforward solvent-diffusion method. The E-rLNPs were found to form stable Pickering emulsions that can resist to various environmental stresses. Moreover, the optimal Pickering emulsion offers excellent protection and significantly improves the oral availability of curcumin. This research presents a promising approach for the development of functional foods and nutraceuticals, showcasing the potential of natural food-derived rLNPs as stabilizers for Pickering emulsions, thereby advancing delivery technologies in the food science.
Collapse
Affiliation(s)
- Dan Han
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu, China
| | - Lihua Ji
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Mingzhou Lu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Dingran Li
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xiangling Sheng
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jiaxing Zhang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China.
| |
Collapse
|
2
|
Han D, Zhang J, Li D, Wang C. Celery seed derived reconstituted lipid nanoparticles as an innate neuron-targeted neuroprotective nanomedicine for ischemic stroke treatment. J Nanobiotechnology 2025; 23:298. [PMID: 40247343 PMCID: PMC12004799 DOI: 10.1186/s12951-025-03372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Ischemic stroke (IS) is the leading cause of worldwide death while the discovery and effective delivery of neuroprotective agents for satisfied IS treatment is still challenging. RESULTS In this study, we discover that celery seed (CS) derived reconstituted lipid nanoparticles (CS-rLNPs) can effectively penetrate across blood-brain barrier (BBB) with increased distribution to the brain. Especially, CS-rLNPs show innate neuron-targeting ability to primarily bind to neuron in the cerebral ischemic area, which is not reported by any parallel studies. Moreover, CS-rLNPs are found to exert therapeutic effects on IS, which effectively restore the function of model mice. Further studies reveal that the therapeutic effects are realized through TLR4/MyD88/NF-κB p65 pathway regulated anti-inflammation and anti-apoptosis mechanisms. CONCLUSIONS Therefore, CS-rLNPs can serve as a neuron-targeted neuroprotective nanomedicine for IS treatment.
Collapse
Affiliation(s)
- Dan Han
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu, China.
| | - Jiaxing Zhang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Dingran Li
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China.
| |
Collapse
|
3
|
Ji L, Bai H, Tao N, Lei Y, Li A, Wang C, Cui P, Gu X. Amorphous Roxithromycin Loaded in-situ Gel for the Treatment of Staphylococcus aureus Induced Upper Respiratory Tract Infection. Infect Drug Resist 2025; 18:1471-1483. [PMID: 40123707 PMCID: PMC11927504 DOI: 10.2147/idr.s502389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Objective Upper respiratory tract infections are among the most prevalent respiratory diseases, imposing both financial and physical burdens on affected individuals. Roxithromycin (ROX), a primary drug for treating bacterial-induced respiratory tract infections, is typically administered orally due to its hydrophobic nature. However, the non-specific distribution resulting from oral administration reduces bioavailability and can cause side effects such as diarrhea. Methods In this study, we prepared a thermo-sensitive in-situ gel using a facile and highly reproducible method by simply mixing two types of poloxamers with ROX. Results The ROX can be well dissolved in the poloxamer matrix in amorphous state to give solution. Upon intranasal administration, the ROX solution undergoes a phase transition to form in-situ gel under body temperature. This gel remains in the nasal cavity for an extended period, releasing the drug directly to the site of infection and minimizing non-specific distribution. Pharmacokinetic experiments revealed that, compared to oral administration, the bioavailability of local nasal administration increased by 1.5 times, and the drug concentration in the local nasal cavity increased by 8 times. In contrast, concentrations in the liver and small intestine did not significantly differ from those following oral administration. In vivo antibacterial experiments also showed that the ROX in-situ gel has superior antibacterial efficacy and excellent biocompatibility. Conclusion These results suggest that the thermo-sensitive ROX in-situ gel is a promising formulation for treating bacterial upper respiratory tract infections.
Collapse
Affiliation(s)
- Li Ji
- Department of Otolaryngology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, 213003, People’s Republic of China
| | - He Bai
- School of Pharmacy, Changzhou University, Changzhou, 213164, People’s Republic of China
| | - Ning Tao
- School of Pharmacy, Changzhou University, Changzhou, 213164, People’s Republic of China
| | - Yanpeng Lei
- School of Pharmacy, Changzhou University, Changzhou, 213164, People’s Republic of China
| | - Anyin Li
- School of Pharmacy, Changzhou University, Changzhou, 213164, People’s Republic of China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, People’s Republic of China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou, 213164, People’s Republic of China
| | - Xiaofeng Gu
- Department of Otolaryngology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, 213003, People’s Republic of China
| |
Collapse
|
4
|
Dai X, Yin Y, Wang C, Xu H. Hyaluronic acid regulated facile synthesis of size-tunable multifunctional nanomedicine for effective cancer therapy. Int J Biol Macromol 2025; 288:138668. [PMID: 39667478 DOI: 10.1016/j.ijbiomac.2024.138668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
The complex and heterogeneous nature of cancer necessitates the development of innovative multifunctional nanomedicines (MN). Hyaluronic acid (HA) is a functional carbohydrate polysaccharide that is widely used in various biomedical fields. In this study, we employed HA as a stabilizer and regulator for the synthesis of a size-tunable nanomedicine comprising ferric ions, doxorubicin, and epigallocatechin gallate (EGCG), referred to as HDE-MN, for cancer therapy. A change in the HA ratio can yield HDE-MNs with sizes varying from ~20 nm to over 100 nm. Modified HA can respond to hyaluronidase (HAase) to provide controllable pH/HAase dual-responsive drug release for improved cancer therapy. Moreover, HA can mediate the targeted delivery of HDE-MNs both in vitro and in vivo to cancer cells. In addition, HDE-MNs reversed multidrug resistance owing to the incorporation of EGCG, inducing ferroptosis due to the involvement of ferric ions. More importantly, HDE-MNs have a photothermal conversion effect, enabling photothermal therapy, photothermally enhanced drug release, and ferroptosis, which collectively contribute to significantly improved cancer therapy. Therefore, the HDE-MNs with laser irradiation achieved full ablation of the in vivo tumors. Together with its good biocompatibility, HDE-MNs may be promising for effective cancer therapy.
Collapse
Affiliation(s)
- Xiuliang Dai
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, China
| | - Yina Yin
- Obstetrics and Gynecology Department, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hongbin Xu
- Obstetrics and Gynecology Department, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, China.
| |
Collapse
|
5
|
Li L, Pan J, Huang M, Sun J, Wang C, Xu H. Metal-Phenolic Networks: A Promising Frontier in Cancer Theranostics. Int J Nanomedicine 2024; 19:11379-11395. [PMID: 39524920 PMCID: PMC11550784 DOI: 10.2147/ijn.s491421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The burgeoning field of cancer theranostics has been significantly advanced by the development of Metal-Phenolic Networks (MPNs), a new class of supramolecular architectures that integrate the advantages of metals and polyphenols. This review focuses on MPNs and their promising applications in cancer theranostics. Through a systematic literature search spanning from 2010 to 2023 in databases including PubMed, Scopus, and Web of Science. The period of search was justified by the rapid evolution of nanomaterials in cancer therapy, with MPNs emerging as a significant player in biomedical applications within the specified timeframe. This review discusses the classification and structure of polyphenolic compounds, as well as their mechanisms of action in cancer treatment. The applications of MPNs in chemotherapy drug delivery, photothermal therapy, chemodynamic therapy, biomedical imaging, and synergistic therapy are especially detailed. The authors emphasize the significance of MPNs in cancer nanomedicine and look forward to their future development directions.
Collapse
Affiliation(s)
- Lingjun Li
- Department of Reproductive Medicine Center, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Jiaoyang Pan
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Mengwei Huang
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanjing Medical University (Changzhou No. 2 People’s Hospital), Changzhou, Jiangsu Province, People’s Republic of China
| | - Jiamin Sun
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanjing Medical University (Changzhou No. 2 People’s Hospital), Changzhou, Jiangsu Province, People’s Republic of China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Hongbin Xu
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanjing Medical University (Changzhou No. 2 People’s Hospital), Changzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
6
|
Zhang Q, Li L, Yang Q, Chen W, Wang Z, Zhang M. Quantitative Intracellular Delivery of Anticancer Nanodrugs Via an Immunoassay Employing Pt-SiO 2 Janus-Peroxidase Nanozyme. Mol Pharm 2024; 21:5598-5606. [PMID: 39446703 DOI: 10.1021/acs.molpharmaceut.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The accurate and efficient quantification of nanodrug dosage is crucial for early anticancer therapy. The enzyme-linked immunosorbent assay (ELISA) has emerged as a robust tool for detecting anticancer nanodrug dosage; however, the development of sensing elements to quantify anticancer nanodrugs still poses a challenge. To overcome this problem, we utilize polysuccinimide-loaded curcumin (CUR @PSIOAm) as a model to employ an ELISA based on peroxidase nanozyme Pt-SiO2 Janus nanoparticles (Pt-SiO2 JNPs) for the indirect quantitative analysis of intracellular anticancer nanodrug dosage. This novel approach employs an immunoassay to indirectly quantify the dosage of anticancer nanodrugs while preserving its structural integrity. The silica components of Pt-SiO2 JNPs adsorb intermediates, while the Pt NP components exhibit high catalytic activity. Pt-SiO2 JNPs are functionalized with anti-PSIOAm antibody (Pt-SiO2 JNPs-Ab) to serve as an immunosensor capable of specific recognition of CUR @PSIOAm. Additionally, we employed cytotoxicity assays and confocal imaging techniques to demonstrate the excellent biocompatibility of CUR @PSIOAm, as well as its specific uptake by cancer cells. According to the experimental results, the limit of detection (LOD) for the immunoassay of Pt-SiO2 JNPs as a marker for detecting CUR @PSIOAm is approximately 4.5-fold lower than that of horseradish peroxidase. Therefore, by optimizing the conditions, we established a direct competitive ELISA using Pt-SiO2 JNPs as colorimetric indicators for the quantitative detection of intracellular CUR @PSIOAm. The LOD for this ELISA was determined to be 0.01 ng/mL, while the loaded CUR amount calculated from the drug loading capacity was found to be 0.22 pg/mL. Furthermore, the recoveries obtained from this established ELISA ranged between 94.0 and 108%, demonstrating excellent accuracy. Consequently, the peroxidase mimic Pt-SiO2 JNPs-based ELISA exhibits significant potential for precise quantification of intracellular anticancer nanodrug dosages.
Collapse
Affiliation(s)
- Qiuning Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement; College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Lei Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement; College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Qianqian Yang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement; College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Wei Chen
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement; College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Ziyuan Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement; College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Mingcui Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement; College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| |
Collapse
|
7
|
Zhou Y, Gong J, Deng X, Shen L, Wu S, Fan H, Liu L. Curcumin and nanodelivery systems: New directions for targeted therapy and diagnosis of breast cancer. Biomed Pharmacother 2024; 180:117404. [PMID: 39307117 DOI: 10.1016/j.biopha.2024.117404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/17/2024] [Accepted: 09/02/2024] [Indexed: 11/14/2024] Open
Abstract
As the global incidence of breast cancer continues to surge, the pursuit of novel, low-toxicity, and highly efficacious therapeutic strategies has emerged as a pivotal research focus. Curcumin (CUR), an active constituent of traditional Chinese medicine (TCM) renowned for its antimicrobial, anti-inflammatory, antioxidant, and antitumor properties, exhibits immense potential in breast cancer therapy. Nevertheless, CUR's poor water solubility, chemical instability, and unfavorable pharmacokinetics have impeded its clinical utilization. To address these challenges, nano-delivery systems have been extensively exploited for CUR administration, enhancing its in vivo stability and bioavailability, and facilitating precise targeting of breast cancer lesions. Therefore, we elaborate on CUR's chemical foundations, drug metabolism, and safety profile, and elucidate its potential mechanisms in breast cancer therapy, encompassing inducing apoptosis and autophagy, blocking cell cycle, inhibiting breast cancer metastasis, regulating tumor microenvironment and reversing chemotherapy resistance. The review primarily emphasizes recent advancements in CUR-based nano-delivery systems for the treatment and diagnosis of breast cancer. Liposomes, nanoparticles (encompassing polymer nanoparticles, solid lipid nanoparticles, mesoporous silica particles, metal/metal oxide nanoparticles, graphene nanomaterials, albumin nanoparticles, etc.), nanogels, and nanomicelles can serve as delivery carriers for CUR, exhibiting promising anti-breast cancer effects in both in vivo and in vitro experiments. Furthermore, nano-CUR can be integrated with fluorescence imaging, magnetic resonance imaging, computed tomography imaging, ultrasound, and other techniques to achieve precise localization and diagnosis of breast cancer masses. While this article has summarized the clinical studies of nano-curcumin, it is noteworthy that the research literature on nano-CUR applied to breast cancer diagnosis and the translation of nano-CUR clinical studies in BC patients remain limited. Therefore, future research should intensify exploration in this direction.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Jie Gong
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Xianguang Deng
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Lele Shen
- Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Shiting Wu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China
| | - Hongqiao Fan
- Department of Aesthetic Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China.
| | - Lifang Liu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China.
| |
Collapse
|
8
|
Huang S, Xiao S, Li X, Tao R, Yang Z, Gao Z, Hu J, Meng Y, Zheng G, Chen X. Development of Dual-Targeted Mixed Micelles Loaded with Celastrol and Evaluation on Triple-Negative Breast Cancer Therapy. Pharmaceutics 2024; 16:1174. [PMID: 39339211 PMCID: PMC11435154 DOI: 10.3390/pharmaceutics16091174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Considering that the precise delivery of Celastrol (Cst) into mitochondria to induce mitochondrial dysfunction may be a potential approach to improve the therapeutic outcomes of Cst on TNBC, a novel tumor mitochondria dual-targeted mixed-micelle nano-system was fabricated via self-synthesized triphenylphosphonium-modified cholesterol (TPP-Chol) and hyaluronic acid (HA)-modified cholesterol (HA-Chol). The Cst-loaded mixed micelles (Cst@HA/TPP-M) exhibited the characteristics of a small particle size, negative surface potential, high drug loading of up to 22.8%, and sustained drug release behavior. Compared to Cst-loaded micelles assembled only by TPP-Chol (Cst@TPP-M), Cst@HA/TPP-M decreased the hemolysis rate and upgraded the in vivo stability and safety. In addition, a series of cell experiments using the triple-negative breast cancer cell line MDA-MB-231 as a cell model proved that Cst@HA/TPP-M effectively increased the cellular uptake of the drug through CD44-receptors-mediated endocytosis, and the uptake amount was three times that of the free Cst group. The confocal results demonstrated successful endo-lysosomal escape and effective mitochondrial transport triggered by the charge converse of Cst@HA/TPP-M after HA degradation in endo-lysosomes. Compared to the free Cst group, Cst@HA/TPP-M significantly elevated the ROS levels, reduced the mitochondrial membrane potential, and promoted tumor cell apoptosis, showing a better induction effect on mitochondrial dysfunction. In vivo imaging and antitumor experiments based on MDA-MB-231-tumor-bearing nude mice showed that Cst@HA/TPP-M facilitated drug enrichment at the tumor site, attenuated drug systemic distribution, and polished up the antitumor efficacy of Cst compared with free Cst. In general, as a target drug delivery system, mixed micelles co-constructed by TPP-Chol and HA-Chol might provide a promising strategy to ameliorate the therapeutic outcomes of Cst on TNBC.
Collapse
Affiliation(s)
- Siying Huang
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Simeng Xiao
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Xuehao Li
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Ranran Tao
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Zhangwei Yang
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Ziwei Gao
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Junjie Hu
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
- Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Yan Meng
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
- Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Guohua Zheng
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
- Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Xinyan Chen
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
- Hubei Shizhen Laboratory, Wuhan 430065, China
| |
Collapse
|
9
|
Wang C, Ji L, Wang J, Zhang J, Qiu L, Chen S, Ni X. Amifostine loaded lipid-calcium carbonate nanoparticles as an oral drug delivery system for radiation protection. Biomed Pharmacother 2024; 177:117029. [PMID: 38991305 DOI: 10.1016/j.biopha.2024.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Amifostine (AMF) as the first-line radiation protection drug, usually suffered from low compliance and short half-life upon clinical applications. The development of oral drug delivery system (DDS) for AMF is a promising solution. However, the inherent shortages of AMF present significant challenges in the design of suitable oral DDS. Here in this study, we utilized the ability of calcium ions to bind with AMF and prepared AMF loaded calcium carbonate (CC) core, CC/AMF, using phase transferred coprecipitation method. We further modified the CC/AMF using phospholipids to prepare AMF loaded lipid-calcium carbonate (LCC) hybrid nanoparticles (LCC/AMF) via a thin-film dispersion method. LCC/AMF combines the oral advantages of lipid nanoparticles with the drug-loading capabilities of CC, which was shown as uniform nano-sized formulation with decent stability in aqueous solution. With favorable intestinal transport and absorption effects, it effectively enhances the in vivo radiation protection efficacy of AMF through oral administration. More importantly, we further investigated the cellular accumulation profile and intracellular transport mechanism of LCC/AMF using MDCK and Caco-2 cell lines as models. This research not only alters the current administration method of AMF to enhance its convenience and compliance, but also provides insights and guidance for the development of more suitable oral DDS for AMF in the future.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Lihua Ji
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Jiaxing Zhang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China.
| | - Shaoqing Chen
- The Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu 213003, China.
| | - Xinye Ni
- The Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
10
|
Wang C, Pan J, Chen S, Qiu L, Hu H, Ji L, Wang J, Liu W, Ni X. Polyvinylpyrrolidone Assisted One-Pot Synthesis of Size-Tunable Cocktail Nanodrug for Multifunctional Combat of Cancer. Int J Nanomedicine 2024; 19:4339-4356. [PMID: 38774026 PMCID: PMC11107942 DOI: 10.2147/ijn.s459428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
Background The in vivo barriers and multidrug resistance (MDR) are well recognized as great challenges for the fulfillment of antitumor effects of current drugs, which calls for the development of novel therapeutic agents and innovative drug delivery strategies. Nanodrug (ND) combining multiple drugs with distinct modes of action holes the potential to circumvent these challenges, while the introduction of photothermal therapy (PTT) can give further significantly enhanced efficacy in cancer therapy. However, facile preparation of ND which contains dual drugs and photothermal capability with effective cancer treatment ability has rarely been reported. Methods In this study, we selected curcumin (Cur) and doxorubicin (Dox) as two model drugs for the creation of a cocktail ND (Cur-Dox ND). We utilized polyvinylpyrrolidone (PVP) as a stabilizer and regulator to prepare Cur-Dox ND in a straightforward one-pot method. Results The size of the resulting Cur-Dox ND can be easily adjusted by tuning the charged ratios. It was noted that both loaded drugs in Cur-Dox ND can realize their functions in the same target cell. Especially, the P-glycoprotein inhibition effect of Cur can synergistically cooperate with Dox, leading to enhanced inhibition of 4T1 cancer cells. Furthermore, Cur-Dox ND exhibited pH-responsive dissociation of loaded drugs and a robust photothermal translation capacity to realize multifunctional combat of cancer for photothermal enhanced anticancer performance. We further demonstrated that this effect can also be realized in 3D multicellular model, which possibly attributed to its superior drug penetration as well as photothermal-enhanced cellular uptake and drug release. Conclusion In summary, Cur-Dox ND might be a promising ND for better cancer therapy.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Jiaoyang Pan
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Shaoqing Chen
- Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Huaanzi Hu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Li Ji
- Department of Otorhinolaryngology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Wenjia Liu
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Xinye Ni
- Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
11
|
Wang C, Xiao R, Yang Q, Pan J, Cui P, Zhou S, Qiu L, Zhang Y, Wang J. Green synthesis of epigallocatechin gallate-ferric complex nanoparticles for photothermal enhanced antibacterial and wound healing. Biomed Pharmacother 2024; 171:116175. [PMID: 38266620 DOI: 10.1016/j.biopha.2024.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/26/2024] Open
Abstract
Bacterial infections are a significant global health concern, particularly in the context of skin infections and chronic wounds, which was further exacerbated by the emerging of antibiotic resistance. Therefore, there are urgent needs to develop alternative antibacterial strategies without inducing significant resistance. Photothermal therapy (PTT) is a promising alternative approach but usually faces limitations such as the need for stable and environmental-friendly PTT agents and ensuring biocompatibility with living tissues, necessitating ongoing research for its clinical advancement. Herein, in this study, with the aim to develop a green synthesized PTT agent for photothermal enhanced antibacterial and wound healing, we proposed a facile one-pot method to prepare epigallocatechin gallate-ferric (EGCG-Fe) complex nanoparticles. The obtained nanoparticles showed improved good size distribution and stability with high reproducibility. More importantly, EGCG-Fe complex nanoparticles have additional photothermal conversion ability which can give photothermal enhanced antibacterial effect on various pathogens, including Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) strains. EGCG-Fe complex nanoparticles also showed powerful biofilm prevention and destruction effects with promoted antibacterial and wound healing on mice model. In conclusion, EGCG-Fe complex nanoparticles can be a robust green material with effective and novel light controllable antibacterial properties for photothermal enhanced antibacterial and wound healing applications.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China.
| | - Ru Xiao
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Qingbo Yang
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Jiaoyang Pan
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Pengfei Cui
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Shuwen Zhou
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Lin Qiu
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Yajing Zhang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, PR China; Hebei Higher Education Applied Technology Research Center of TCM Development and Industrialization, Hebei University of Chinese Medicine, Shijiazhuang 050200, PR China.
| | - Jianhao Wang
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China.
| |
Collapse
|
12
|
Han D, Wang M, Dong N, Zhang J, Li D, Ma X, Ma Y, Wang S, Zhu Y, Wang C. Selective homing of brain-derived reconstituted lipid nanoparticles to cerebral ischemic area enables improved ischemic stroke treatment. J Control Release 2024; 365:957-968. [PMID: 38104776 DOI: 10.1016/j.jconrel.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Lipid nanoparticles (LNPs) hold great promise as carriers for developing drug delivery systems (DDSs) aimed at managing ischemic stroke (IS). Previous research has highlighted the vital role played by the lipid composition and biophysical characteristics of LNPs, influencing their interactions with cells and tissues. This understanding presents an opportunity to engineer LNPs tailored specifically for enhanced IS treatment. We previously introduced the innovative concept of reconstituted lipid nanoparticles (rLNPs), which not only retain the advantages of conventional LNPs but also incorporate lipids from the originating cell or tissue. Brain-derived rLNPs (B-rLNPs) exhibit significantly superior accumulation within the cerebral ischemic region when compared to liver-derived rLNPs (L-rLNPs). The homing effect of B-rLNPs was then employed to construct 3-n-butylphthalide (NBP) loaded DDS (B-rLNPs/NBP) for the treatment of IS. Our results demonstrated that compared with free NBP, B-rLNPs/NBP can significantly reduce infarct volume, neurological deficits, blood-brain barrier (BBB) leakage rate, brain water content, neutrophil infiltration, alleviate pathological structures, and improve the motor function in MCAO/R model. We also proved that B-rLNPs/NBP showed further reinforced protective effects on the same model than free NBP through the regulation of TLR4/MyD88/NF-κB (anti-inflammation) and Bax/Bcl-2 (anti-apoptosis) pathways. This study offers a promising tool towards improved IS treatment.
Collapse
Affiliation(s)
- Dan Han
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu, China
| | - Meihua Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu, China
| | - Ningyu Dong
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jiaxing Zhang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Dingran Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoling Ma
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ying Ma
- Jiangsu Institute for Food and Drug Control, Nanjing, Jiangsu, China
| | - Siliang Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China.
| |
Collapse
|