1
|
Ruan Q, Diao L, Li Z, Ding D, Han P, Jiang Y, Yin G, Feng J, Wang Q, Jiang J, Zhang J. Design and preclinical evaluation of 99mTc-Labeled dimer FAPI-46 derivatives as potential tumor radiotracers. Eur J Med Chem 2025; 287:117343. [PMID: 39908795 DOI: 10.1016/j.ejmech.2025.117343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Fibroblast activation protein (FAP) is a crucial target for tumor diagnosis and treatment. FAP inhibitors (FAPIs) can selectively bind to FAP, and ligands with multiple targeting groups are anticipated to improve tumor-specific uptake. A dimeric FAPI ligand (L2) with high affinity for FAP was selected. Four hydrophilic 99mTc-labeled complexes ([99mTc]Tc-L2-TPPTS, [99mTc]Tc-L2-TPPMS, [99mTc]Tc-L2-PDA, and [99mTc]Tc-L2-NIC) were successfully prepared and exhibited good stability in vitro. Among them, [99mTc]Tc-L2-TPPTS and [99mTc]Tc-L2-PDA showed superior cellular uptake and specific binding to FAP. They displayed minimal nontarget uptake in normal mice and exhibited significant tumor uptake (22.01 ± 1.38 % ID/g and 26.58 ± 2.17 % ID/g at 1 h post-injection) with high specificity for FAP in U87MG tumor-bearing mice. SPECT/CT imaging experiments revealed specific accumulation of both complexes at the U87MG, PANC-1, and HT-1080-FAP tumor sites, suggesting their excellent specificity for FAP. In particular, [99mTc]Tc-L2-TPPTS has lower nontarget uptake in various tumor models and accelerated blood clearance. Additionally, an L2-TPPTS kit was successfully prepared providing convenient conditions for subsequent clinical transformation research.
Collapse
Affiliation(s)
- Qing Ruan
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China; Key Laboratory of Beam Technology of the Ministry of Education, School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, PR China
| | - Lina Diao
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Zuojie Li
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Dajie Ding
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Peiwen Han
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Guangxing Yin
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Junhong Feng
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Qianna Wang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Jianyong Jiang
- Key Laboratory of Beam Technology of the Ministry of Education, School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, PR China.
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
2
|
Feng J, Wang Q, Yin G, Jiang Y, Ruan Q, Han P, Xiao Q, Ding D, Li Z, Du J, Zhang J. Synthesis and Preclinical Evaluation of Novel 99mTc-Labeled FR-Targeting Agents with Satisfactory Imaging Contrast and Reduced Renal Uptake. J Med Chem 2025; 68:5675-5686. [PMID: 39982495 DOI: 10.1021/acs.jmedchem.4c02932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The folate receptor is overexpressed in a variety of epithelial-derived malignant cells. Several folate-based tracers have shown the ability to target FR, but excessive renal uptake is a general concern. To decrease renal uptake and achieve high target-to-nontarget ratios, two folate derivatives (DProFA and DAlaFA) were designed and synthesized. Eight complexes with high labeling yields and good in vitro stability were obtained by radiolabeling with technetium-99m and different coligands. The results of both in vitro cell and in vivo normal mice biodistribution studies demonstrated specific binding of eight complexes to the FR. Among them, [99mTc]Tc-DProFA-L1 exhibited lower off-target uptake and high tumor uptake in tumor-bearing mice, and significant inhibition in the biodistribution and SPECT/CT imaging study. The lower renal uptake of [99mTc]Tc-DProFA-L1 may prevent irradiation damage to the kidney. Consequently, [99mTc]Tc-DProFA-L1 is a highly promising candidate probe for the diagnosis of epithelial tumors in clinical nuclear medicine.
Collapse
Affiliation(s)
- Junhong Feng
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Department of Isotopes, China Institute of Atomic Energy, P.O. Box 2108, Beijing 102413, China
| | - Qianna Wang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Guangxing Yin
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Key Laboratory of Beam Technology of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P. R. China
| | - Qing Ruan
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Key Laboratory of Beam Technology of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P. R. China
| | - Peiwen Han
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qingna Xiao
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Dajie Ding
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Zuojie Li
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jin Du
- Department of Isotopes, China Institute of Atomic Energy, P.O. Box 2108, Beijing 102413, China
- China Isotope & Radiation Corporation, Beijing 100089, China
- CAEA Center of Excellence on Nuclear Technology Application for Engineering and Industrialization of Radiopharmaceuticals, Beijing 102413, China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
3
|
Yu Z, Jiang Z, Cheng X, Yuan L, Chen H, Ai L, Wu Z. Development of fibroblast activation protein-α radiopharmaceuticals: Recent advances and perspectives. Eur J Med Chem 2024; 277:116787. [PMID: 39197253 DOI: 10.1016/j.ejmech.2024.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Fibroblast activation protein-α (FAP) has emerged as a promising target in the field of radiopharmaceuticals due to its selective expression in cancer-associated fibroblasts (CAFs) and other pathological conditions involving fibrosis and inflammation. Recent advancements have focused on developing FAP-specific radioligands for diagnostic imaging and targeted radionuclide therapy. This perspective summarized the latest progress in FAP radiopharmaceutical development, highlighting novel radioligands, preclinical evaluations, and potential clinical applications. Additionally, we analyzed the advantages and existing problems of targeted FAP radiopharmaceuticals, and discussed the key breakthrough directions of this target, so as to improve the development and conversion of FAP-targeted radiopharmaceuticals.
Collapse
Affiliation(s)
- Ziyue Yu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Zeng Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Leilei Yuan
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Zehui Wu
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
4
|
Zhou C, Li G, Quan Z, Deng Z, Li G, Zhang M, Kang F, Yang W, Wang J. Prospective Study Comparing [ 99mTc]Tc-DP-FAPI Quantitative SPECT/CT with [ 68Ga]Ga-FAPI-04 PET/CT in Patients with Gastrointestinal Tumors. Mol Pharm 2024; 21:5297-5304. [PMID: 39298637 DOI: 10.1021/acs.molpharmaceut.4c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Over the past decade, [68Ga]Ga-FAPI-04 positron emission tomography (PET)/CT imaging has been widely used for the treatment of various tumors. However, the application of 99mTC-labeled fibroblast activation protein inhibitors in tumors has been less studied. Our team previously demonstrated the safe biological distribution of [99mTc]Tc-DP-FAPI in the human body. Based on this, this study reports the accuracy of [99mTc]Tc-DP-FAPI in the imaging diagnosis of gastrointestinal tumors and compares it with that of [68Ga]Ga-FAPI-04 to evaluate the differences. A total of 24 patients with clinically diagnosed gastrointestinal tumors were prospectively included. All patients received [99mTc]Tc-DP-FAPI quantitative SPECT/CT imaging on the first day and [68Ga]Ga-FAPI-04 PET/CT imaging on the second day. And the effectiveness of the two imaging probes in detecting suspicious lesions was analyzed and compared. The primary tumors of all 24 patients were well detected by two imaging probes, and the sensitivity of [99mTc]Tc-DP-FAPI and [68Ga]Ga-FAPI-04 to the primary lesions was 100%. [99mTc]Tc-DP-FAPI examined 21 lymph nodes with a sensitivity and specificity of 32.8% and 10.9%, and [68Ga]Ga-FAPI-04 detected 57 lymph nodes with a sensitivity and specificity of 89.1% and 67.2%, respectively. Three distant metastases were detected by [99mTc]Tc-DP-FAPI and nine metastases by [68Ga]Ga-FAPI-04. The study showed that [99mTc]Tc-DP-FAPI is highly sensitive to detecting primary lesions of gastrointestinal tumors. Compared with [68Ga]Ga-FAPI-04, [99mTc]Tc-DP-FAPI has the same sensitivity in detecting primary tumors but has certain limitations in detecting metastases. [99mTc]Tc-DP-FAPI is of great value for preliminary screening of tumor lesions and early diagnosis of disease in patients who are suspected of having gastrointestinal tumors.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710000, China
| | - Guoquan Li
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710000, China
| | - Zhiyong Quan
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710000, China
| | - Zongke Deng
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710000, China
| | - Guiyu Li
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710000, China
| | - Mingru Zhang
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710000, China
| | - Fei Kang
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710000, China
| | - Weidong Yang
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710000, China
| | - Jing Wang
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710000, China
| |
Collapse
|
5
|
Zhao L, Kang F, Pang Y, Fang J, Sun L, Wu H, Lan X, Wang J, Chen H. Fibroblast Activation Protein Inhibitor Tracers and Their Preclinical, Translational, and Clinical Status in China. J Nucl Med 2024; 65:4S-11S. [PMID: 38719234 DOI: 10.2967/jnumed.123.266983] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Indexed: 07/16/2024] Open
Abstract
Quinoline-based fibroblast activation protein (FAP) inhibitors (FAPIs) have recently emerged as a focal point in global nuclear medicine, underscored by their promising applications in cancer theranostics and the diagnosis of various nononcological conditions. This review offers an in-depth summary of the existing literature on the evolution and use of FAPI tracers in China, tracing their journey from preclinical to clinical research. Moreover, this review also assesses the diagnostic accuracy of FAPI PET for the most common cancers in China, analyzes its impact on oncologic management paradigms, and investigates the potential of FAP-targeted radionuclide therapy in patients with advanced or metastatic cancer. This review also summarizes studies using FAPI PET for nononcologic disorders in China. Thus, this qualitative overview presents a snapshot of China's engagement with FAPI tracers, aiming to guide future research endeavors.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yizhen Pang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianyang Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China; and
| | - Long Sun
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hua Wu
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - XiaoLi Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China;
| | - Haojun Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China;
- Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Ruan Q, Ding D, Diao L, Feng J, Yin G, Jiang Y, Wang Q, Han P, Jiang J, Zhang J. Synthesis and Preclinical Evaluation of Novel 99mTc-Labeled FAPI-46 Derivatives with Significant Tumor Uptake and Improved Tumor-to-Nontarget Ratios. J Med Chem 2024; 67:3190-3202. [PMID: 38320123 DOI: 10.1021/acs.jmedchem.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Fibroblast activation protein (FAP), which is expressed on the cell membranes of fibroblasts in most solid tumors, has become an important target for tumor diagnosis and treatment. However, previously reported 99mTc-labeled FAPI-04 complexes have high blood uptake, limiting their use in the clinic. In this work, six 99mTc-labeled FAPI-46 derivatives with different linkers (different amino acids, peptides, or polyethylene glycol) were prepared and evaluated. They had good in vitro stability, hydrophilicity, and good specificity for FAP. The biodistribution and MicroSPECT images revealed that they all had high specific tumor uptake for FAP, and their blood uptake was significantly decreased. Among them, [99mTc]Tc-6-1 exhibited the highest target-to-nontarget ratios (tumor/blood: 6.06 ± 1.19; tumor/muscle: 10.26 ± 0.44) and good tumor uptake (16.15 ± 0.83%ID/g), which also had significantly high affinity for FAP, good in vivo stability, and safety. Therefore, [99mTc]Tc-6-1 holds great potential as a promising molecular tracer for FAP tumor imaging.
Collapse
Affiliation(s)
- Qing Ruan
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Key Laboratory of Beam Technology of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P. R. China
| | - Dajie Ding
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Lina Diao
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Junhong Feng
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Guangxing Yin
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qianna Wang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Peiwen Han
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jianyong Jiang
- Key Laboratory of Beam Technology of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P. R. China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
7
|
Yu Z, Huang Y, Chen H, Jiang Z, Li C, Xie Y, Li Z, Cheng X, Liu Y, Li S, Liang Y, Wu Z. Design, Synthesis, and Evaluation of 18F-Labeled Tracers Targeting Fibroblast Activation Protein for Brain Imaging. ACS Pharmacol Transl Sci 2023; 6:1745-1757. [PMID: 37974629 PMCID: PMC10644484 DOI: 10.1021/acsptsci.3c00187] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
Fibroblast activation protein (FAP) is closely related to central nervous system diseases such as stroke and brain tumors, but PET tracers that can be used for brain imaging have not been reported. Here, we designed, synthesized, and evaluated 18F-labeled UAMC1110 derivatives suitable for brain imaging targeting FAP. By substituting the F atom for the H atom on the aromatic ring of compound UAMC1110, 1a-c were designed and prepared. 1a-c were confirmed to have a high affinity for FAP through molecular docking and enzyme assay. [18F]1a-c were successfully prepared and confirmed to have high affinity. The stability in vivo indicates that no obvious metabolites of [18F]1a,b were found in the plasma 1 h after injection, which is beneficial for brain imaging. In vitro cell uptake experiments showed that [18F]1a,b and [68Ga]FAPI04 exhibited similar uptake and internalization rates. PET imaging of U87MG subcutaneous tumor showed that [18F]1a,b could penetrate the blood-brain barrier with higher uptake and longer retention time than [68Ga]FAPI04 (uptake at 62.5 min, 1.06 ± 0.23, 1.09 ± 0.25% ID/g vs 0.21 ± 0.10% ID/g, respectively). The brain-to-blood ratios of [18F]1a,b were better than [68Ga]FAPI04. Biodistribution and PET imaging showed that [18F]1a had better uptake on tumors and a higher tumor-to-muscle ratio than [18F]1b and [68Ga]FAPI04. Further imaging of U87MG intracranial glioma showed that [18F]1a outlined high-contrast gliomas in a short period of time compared to [18F]1b. Therefore, [18F]1a is expected to be useful in the diagnosis of FAP-related brain diseases.
Collapse
Affiliation(s)
- Ziyue Yu
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Yong Huang
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Hualong Chen
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Zeng Jiang
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Chengze Li
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Yi Xie
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Zhongjing Li
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Xuebo Cheng
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Yajing Liu
- School
of Pharmaceutical Science, Capital Medical
University, Beijing 100069, China
| | - Shengli Li
- Department
of Laboratory Animal Science, Capital Medical
University, Beijing 100069, China
| | - Ying Liang
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Zehui Wu
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
8
|
Rezaei S, Gharapapagh E, Dabiri S, Heidari P, Aghanejad A. Theranostics in targeting fibroblast activation protein bearing cells: Progress and challenges. Life Sci 2023; 329:121970. [PMID: 37481033 PMCID: PMC10773987 DOI: 10.1016/j.lfs.2023.121970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Cancer cells are surrounded by a complex and highly dynamic tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs), a critical component of TME, contribute to cancer cell proliferation as well as metastatic spread. CAFs express a variety of biomarkers, which can be targeted for detection and therapy. Most importantly, CAFs express high levels of fibroblast activation protein (FAP) which contributes to progression of cancer, invasion, metastasis, migration, immunosuppression, and drug resistance. As a consequence, FAP is an attractive theranostic target. In this review, we discuss the latest advancement in targeting FAP in oncology using theranostic biomarkers and imaging modalities such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), computed tomography (CT), fluorescence imaging, and magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
- Sahar Rezaei
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Gharapapagh
- Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Dabiri
- Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pedram Heidari
- Departments of Radiology, Massachusetts General Hospital, Boston, United States
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Lai C, Cao R, Li R, He C, Wang X, Shi H, Qu C, Qian K, Song S, Chen WH, Cheng Z. Fibroblast Activation Protein Targeting Probe with Gly-Pro Sequence for PET of Glioblastoma. Mol Pharm 2023; 20:4120-4128. [PMID: 37487027 DOI: 10.1021/acs.molpharmaceut.3c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
As an important cancer-associated fibroblast-specific biomarker, fibroblast activation protein (FAP) has become an attractive target for tumor diagnosis and treatment. However, most FAP-based radiotracers showed inadequate uptake and short retention in tumors. In this study, we designed and synthesized a novel FAP ligand (DOTA-GPFAPI-04) through assembling three functional moieties: a quinoline-based FAP inhibitor for specifically targeting FAP, a FAP substrate Gly-Pro as a linker for increasing the FAP protein interaction, and a 2,2',2″,2‴-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA) chelator for radiolabeling with different radionuclides. The FAP targeting ability of DOTA-GPFAPI-04 was investigated by molecular docking studies. DOTA-GPFAPI-04 was then radiolabeled with 68Ga to give [68Ga]Ga-DOTA-GPFAPI-04 for positron emission tomography (PET) imaging of glioblastoma. [68Ga]Ga-DOTA-GPFAPI-04 exhibited a purity of >98% and high stability analyzed by radio-HPLC in saline and mouse serum. Cell uptake studies demonstrated the targeting specificity of the probe. Further in vivo pharmacokinetic studies in normal mice demonstrated the quick clearance of the probe. Moreover, compared with the widely studied [68Ga]Ga-FAPI-04, [68Ga]Ga-DOTA-GPFAPI-04 showed much higher U87MG tumor uptake values (4.467 ± 0.379 for [68Ga]Ga-DOTA-GPFAPI-04 and 1.267 ± 0.208% ID/g for [68Ga]Ga-FAPI-04 at 0.5 h post-injection, respectively). The area under the curve based on time-activity curve (TAC) analysis for tumor radioactivity in small animal models was 422.5 for [68Ga]Ga-DOTA-GPFAPI-04 and 98.14 for [68Ga]Ga-FAPI-04, respectively, demonstrating that the former had longer tumor retention time. The tumor-to-muscle (T/M) ratio for [68Ga]Ga-DOTA-GPFAPI-04 reached 9.15 in a U87MG xenograft animal model. PET imaging and blocking assays showed that [68Ga]Ga-DOTA-GPFAPI-04 had specific tumor uptake. In summary, this study demonstrates the successful synthesis and evaluation of a novel FAPI targeting probe, [68Ga]Ga-DOTA-GPFAPI-04, with a Gly-Pro sequence. It shows favorable in vivo glioblastoma imaging properties and relatively long tumor retention, highlighting DOTA-GPFAPI-04 as a promising molecular scaffold for developing FAP targeting tumor theranostic agents.
Collapse
Affiliation(s)
- Chaoquan Lai
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rui Cao
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Renda Li
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunfeng He
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Hui Shi
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunrong Qu
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kun Qian
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| |
Collapse
|