1
|
Yarlagadda DL, Kawakami K, Samavedi S. Leveraging Molecular Interactions to Develop a Generalized Design Framework for Coamorphous Drug-Drug Mixtures Exhibiting Elevated Glass Transition Temperatures. Mol Pharm 2025. [PMID: 40377977 DOI: 10.1021/acs.molpharmaceut.5c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Coamorphous mixtures (CAMs) prepared with two drugs have the potential to enhance the oral absorption of poorly soluble drugs and achieve combination therapy. From a practical standpoint, improving the glass transition temperature (Tg) of CAMs is desirable as it enhances stability and extends shelf life during storage. Toward the eventual goal of developing highly stable CAMs, this study establishes a generalized framework that systematically relates elevated Tg values of CAMs to intermolecular interactions based on specific functional groups. CAMs were prepared via quench-cooling using various combinations of indomethacin, ketoprofen, flurbiprofen, flufenamic acid, aripiprazole, bifonazole, and clotrimazole. CAMs prepared with drugs containing the COOH group exhibited significant positive deviations from the Tg values predicted by the Gordon-Taylor equation (i.e., ideal mixing behavior). COOH-associated hydrogen bonding was determined to be a key factor for Tg elevation, with synergistic contributions from π-π interactions and halogen bonding. In CAMs exhibiting the largest Tg deviations, contributions from ionic bonding were crucial, and were likely favored by differences in the pKa values of the constituent drugs. Continuity in Tg as a function of varying molar ratios indicated that stoichiometric pairing had a relatively minor contribution, while a decrease in the width of the glass transition suggested enhancement of molecular cooperativity as a possible mechanism for CAM stabilization. In contrast, non-COOH hydrogen bonding, π-π interactions, and halogen bonding on their own did not result in any meaningful Tg deviations from theoretical predictions. Systematic correlations between Tg deviations and molecular interactions reported in this study can lead to generalized design rules for the development of stable CAMs.
Collapse
Affiliation(s)
- Dani Lakshman Yarlagadda
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, IITH Main Road, Near NH 65, Kandi, Sangareddy, Telangana 502285, India
| | - Kohsaku Kawakami
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Satyavrata Samavedi
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, IITH Main Road, Near NH 65, Kandi, Sangareddy, Telangana 502285, India
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
2
|
Eriksen JB, Milsmann J, Brandl M, Bauer-Brandl A. The impact of volume of dissolution medium for biopredictive dissolution/permeation studies of enabling formulations: A comparison of two brands of telmisartan / amlodipine tablets. J Pharm Sci 2025; 114:1376-1384. [PMID: 39694273 DOI: 10.1016/j.xphs.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
For compendial dissolution testing of solid dosage forms, media volumes of 500 to 900 mL are used in apparatus I and II to ensure sink conditions. However, these volumes are considerably larger than those in the gastrointestinal tract. Thus, the experiments are not biomimetic and possibly not suitable for biopredictive dissolution testing. The present study investigates the influence of volumes of dissolution media in non-compendial dissolution/permeation settings. Dissolution/permeation studies of two commercial bilayer tablets (Twynsta® and Arrow) containing the active pharmaceutical ingredients telmisartan (40 mg) and amlodipine (10 mg) were evaluated using the MacroFlux tool with various biomimetic media mimicking fasted and fed states as well as biological variability ("biorelevant"). Particularly, the two-stage dissolution process of telmisartan from the tablets is interesting because the compound has a pH-dependent solubility, and 2-stage dissolution leads to supersaturation and precipitation upon pH shift. For telmisartan, lower dissolution volumes significantly induced precipitation, leading to lower permeation, while no precipitation was observed in the larger volume. The permeation of telmisartan was overly sensitive to both pH and micelle concentrations in the biomimetic media. Amlodipine showed complete dissolution under any conditions, which correlates with its known complete absorption in vivo. In conclusion, volumes of dissolution media (and their compositions) are key parameters and play a significant role for designing relevant biomimetic experiments used to predict the bioavailability of supersaturating systems.
Collapse
Affiliation(s)
- Jonas Borregaard Eriksen
- Department of Physics Chemistry and Pharmacy, University of Southern Denmark, SDU, FKF, Campusvej 52, Odense, 5230, Denmark; Analytical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, Biberach an der Riss, 88400, Germany
| | - Johanna Milsmann
- Analytical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, Biberach an der Riss, 88400, Germany
| | - Martin Brandl
- Department of Physics Chemistry and Pharmacy, University of Southern Denmark, SDU, FKF, Campusvej 52, Odense, 5230, Denmark
| | - Annette Bauer-Brandl
- Department of Physics Chemistry and Pharmacy, University of Southern Denmark, SDU, FKF, Campusvej 52, Odense, 5230, Denmark.
| |
Collapse
|
3
|
Sharma A, Dey S, Naga Sidhartha N, Shah S, Sapkal R, Srivastava S, Dikundwar AG. Coamorphous systems of rebamipide: Selection of amino acid coformers based on protein-ligand docking, in vitro assessment and study of interactions by computational and multivariate analysis. Int J Pharm 2024; 667:124955. [PMID: 39542122 DOI: 10.1016/j.ijpharm.2024.124955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Three coamorphous systems of Rebamipide (REB) with the amino acids namely, Tryptophan (TRP), Phenylalanine (PHE) and Arginine (ARG) are reported. A unique approach for the virtual screening of amino acid coformers is presented by employing molecular docking studies based on interactions of the drug molecule with various amino acid fragments in the drug-receptor cocrystal structure. Successful formation of stable coamorphous systems with ARG, TRP and PHE served as the proof-of-concept along with negative benchmarking standards Histidine and Aspartic acid, wherein coamorphous systems could not be obtained despite multiple trials which resulted in crystalline physical mixtures. The coamorphous systems were characterized by a halo pattern in Powder XRD and a single glass transition temperature (Tg) in modulated DSC. Physical stability assessments of the coamorphous systems showed direct correlation of Tg with the observed stability of the amorphous phase which was found in the order ARGREB > TRPREB ≥ PHEREB. To determine the specific functional groups engaged in the interactions, multivariate analysis was performed on the FTIR spectra. These interactions were further validated by DFT and QTAIM analysis, which revealed key noncovalent interactions in the three coamorphous systems. All three coamorphous systems showed excellent release profiles of the API as demonstrated by the f2 and DE parameters in the order ARGREB ≥ TRPREB > PHEREB ≥ amorphous drug, far exceeding that of the crystalline drug. The interplay of multivariate analysis and QTAIM can be useful in estimating the interactions within the coamorphous systems which can further contribute to stability and physicochemical properties of the systems.
Collapse
Affiliation(s)
- Abhishek Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India; Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Soumyajit Dey
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Nagamalli Naga Sidhartha
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rekha Sapkal
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Amol G Dikundwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
4
|
Samie A, Alavian H. A Perspective on the Permeability of Cocrystals/Organic Salts of Oral Drugs. Mol Pharm 2024; 21:4860-4911. [PMID: 39284012 DOI: 10.1021/acs.molpharmaceut.4c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
According to the BCS classification system, the differentiation of drugs is based on two essential parameters of solubility and permeability, meaning the latter is as pivotal as the former in creating marketable pharmaceutical products. Nevertheless, the indispensable role of permeability in pharmaceutical cocrystal profiles has not been sufficiently cherished, which can be most probably attributed to two principal reasons. First, responsibility may be on more user-friendly in vitro measurement procedures for solubility compared to permeability, implying the permeability measurement process seems unexpectedly difficult for researchers, whereas they have a complete understanding of solubility concepts and experiments. Besides, it may be ascribed to the undeniable attraction of introducing new crystal-based structures which mostly leaves the importance of improving the function of existing multicomponents behind. Bringing in new crystalline entities, to rephrase it, researchers have a fairly better chance of achieving high-class publications. Although the Food and Drug Administration (FDA) has provided a golden opportunity for pharmaceutical cocrystals to straightforwardly enter the market by simply considering them as derivatives of the existing active pharmaceutical ingredients, inattention to assessing and scaling up permeability which is intimately linked with solubility has resulted in limited numbers of them in the global pharmaceutical market. Casting a glance at the future, it is apprehended that further development in the field of permeability of pharmaceutical cocrystals and organic salts requires a meticulous perception of achievements to date and potentials to come. Thence, this perspective scrutinizes the pathway of permeation assessment making researchers confront their fear upfront through mapping the simplest way of permeability measurement for multicomponents of oral drugs.
Collapse
Affiliation(s)
- Ali Samie
- Department of Medicinal Chemistry, School of Pharmacy and Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Hoda Alavian
- Department of Medicinal Chemistry, School of Pharmacy and Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
5
|
Chen X, Qin Y, Wang L, Zhu Y, Zhang H, Liu W, Zeng M, Dai Q. Co-amorphous systems of sulfasalazine with matrine-type alkaloids: Enhanced solubility behaviors and synergistic therapeutic potential. Eur J Pharm Biopharm 2024; 203:114475. [PMID: 39216557 DOI: 10.1016/j.ejpb.2024.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Sulfasalazine (SULF), a sulfonamide antibiotic, has been utilized in the treatment of rheumatoid arthritis (RA) and inflammatory bowel disease (IBD) since its discovery. However, its poor water solubility causes the high daily doses (1---3 g) for patients, which may lead to the intolerable toxic and side effects for their lifelong treatment for RA and IBD. In this work, two water-soluble natural anti-inflammatory alkaloids, matrine (MAR) and sophoridine (SPD), were employed to construct the co-amorphous systems of SULF for addressing its solubility issue. These newly obtained co-amorphous forms of SULF were comprehensively characterized by powder X-ray diffraction (PXRD), temperature-modulated differential scanning calorimetry (mDSC), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). We also investigated their dissolution behavior, including powder dissolution, in vitro release, and intrinsic dissolution rate. Both co-amorphous systems exhibited superior dissolution performance compared to crystalline SULF. The underlying mechanism responsible for the enhanced dissolution behaviors in co-amorphous systems were also elucidated. These mechanisms include the inhibition of nucleation, complexation, increased hydrophilicity, and robust intermolecular interactions in aqueous solutions. Importantly, these co-amorphous systems demonstrated satisfactory physical stability under various storage conditions. Network pharmacological analysis was utilized to investigate the potential therapeutic targets of both co-amorphous systems against RA, revealing similar yet distinct multi-target synergistic therapeutic mechanisms in the treatment of this condition. Our study suggests these drug-drug co-amorphous systems hold promise for optimizing SULF dosage in the future and providing a potential drug combination strategy.
Collapse
Affiliation(s)
- Xin Chen
- Innovation Centre for Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China.
| | - Yirui Qin
- Innovation Centre for Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China; Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Lijun Wang
- Innovation Centre for Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China; Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Yujing Zhu
- Laboratory of Pharmaceutical Solid-State Chemistry, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Hailu Zhang
- Laboratory of Pharmaceutical Solid-State Chemistry, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China; Interdisciplinary Institute of NMR and Molecular Sciences (NMR-X), School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Wenhu Liu
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China.
| | - Mei Zeng
- Innovation Centre for Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China; Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Qian Dai
- Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China.
| |
Collapse
|
6
|
Queiroz LHS, Barros RS, de Sousa FF, Lage MR, Sarraguça MC, Ribeiro PRS. Preparation and Characterization of a Rifampicin Coamorphous Material with Tromethamine Coformer: An Experimental-Theoretical Study. Mol Pharm 2024; 21:1272-1284. [PMID: 38361428 DOI: 10.1021/acs.molpharmaceut.3c00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Rifampicin (RIF) is an antibiotic used to treat tuberculosis and leprosy. Even though RIF is a market-available drug, it has a low aqueous solubility, hindering its bioavailability. Among the strategies for bioavailability improvement of poorly soluble drugs, coamorphous systems have been revealed as an alternative in the increase of the aqueous solubility of drug systems and at the same time also increasing the amorphous state stability and dissolution rate when compared with the neat drug. In this work, a new coamorphous form from RIF and tromethamine (TRIS) was synthesized by slow evaporation. Structural, electronic, and thermodynamic properties and solvation effects, as well as drug-coformer intermolecular interactions, were studied through density functional theory (DFT) calculations. Powder X-ray diffraction (PXRD) data allowed us to verify the formation of a new coamorphous. In addition, the DFT study indicates a possible intermolecular interaction by hydrogen bonds between the available amino and carbonyl groups of RIF and the hydroxyl and amino groups of TRIS. The theoretical spectra obtained are in good agreement with the experimental data, suggesting the main interactions occurring in the formation of the coamorphous system. PXRD was used to study the physical stability of the coamorphous system under accelerated ICH conditions (40 °C and 75% RH), indicating that the material remained in an amorphous state up to 180 days. The thermogravimetry result of this material showed a good thermal stability up to 153 °C, and differential scanning calorimetry showed that the glass temperature (Tg) was at 70.0 °C. Solubility studies demonstrated an increase in the solubility of RIF by 5.5-fold when compared with its crystalline counterpart. Therefore, this new material presents critical parameters that can be considered in the development of new coamorphous formulations.
Collapse
Affiliation(s)
- Luís H S Queiroz
- NUPFARQ, Programa de Pós-Graduação em Ciência dos Materiais (PPGCM), Centro de Ciências de Imperatriz (CCIM), Universidade Federal do Maranhão (UFMA), Imperatriz, Maranhão 65.900-410, Brazil
| | - Ranna S Barros
- NUPFARQ, Programa de Pós-Graduação em Ciência dos Materiais (PPGCM), Centro de Ciências de Imperatriz (CCIM), Universidade Federal do Maranhão (UFMA), Imperatriz, Maranhão 65.900-410, Brazil
| | - Francisco F de Sousa
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará (UFPA), Belém, Pará 65.075-110, Brazil
| | - Mateus R Lage
- NUPFARQ, Programa de Pós-Graduação em Ciência dos Materiais (PPGCM), Centro de Ciências de Imperatriz (CCIM), Universidade Federal do Maranhão (UFMA), Imperatriz, Maranhão 65.900-410, Brazil
- Coordenação do Curso de Ciência e Tecnologia, Centro de Ciências de Balsas, Universidade Federal do Maranhão (UFMA), Balsas, Maranhão 65.800-000, Brazil
| | - Mafalda C Sarraguça
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal
| | - Paulo R S Ribeiro
- NUPFARQ, Programa de Pós-Graduação em Ciência dos Materiais (PPGCM), Centro de Ciências de Imperatriz (CCIM), Universidade Federal do Maranhão (UFMA), Imperatriz, Maranhão 65.900-410, Brazil
| |
Collapse
|