1
|
Prajapati MK, Mittal A, Panda P. Phytoflavonoids as alternative therapeutic effect for melanoma: Integrative Network pharmacology, molecular dynamics and drug-likeness profiling for lead discovery. Comput Biol Chem 2025; 117:108390. [PMID: 40056707 DOI: 10.1016/j.compbiolchem.2025.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/10/2025]
Abstract
Melanoma, an aggressive skin cancer, poses significant therapeutic challenges due to its resistance to conventional therapies and high metastatic potential. From this perspective, phytoflavonoids from different medicinal and aromatic plants gained attention due to their diverse multimodal anticancer effects with higher antioxidant and anti-inflammatory properties. This study explores phytoflavonoid potency against melanoma via a computer-aided drug design (CADD) platform. Using the core moiety of flavonoids (flavan), four most putative targets, such as cyclin-dependent kinases 1 and 5 (CDK1, CDK5), cell division cycles 25B and 225 C (CDC25B, and CDC225C), have been identified through a network pharmacology approach using TNMplot datasets (GenChip and RNA sequence). Further, 44 phytoflavonoids were selected from extensive literature, and molecular docking studies were carried out against four targets along with standard drugs using AutoDock 4.2 software. Subsequently, physicochemical, toxicity, pharmacokinetics, and drug-ability profiles of phytoflavonoids were predicted. Based on potency and drug-ability, we have selected 'CDK1-naringenin' with the standard drug complex, 'CDK1-dinaciclib,' for molecular dynamic simulation at 100 nanoseconds using GROMACS 2020 software. Based on potency (average docking score: 8.35 kcal/mol.), physicochemical properties (obeyed Lipinski rule of five), toxicity (class-IV), fifty percent lethal dose (2000 mg/kg), bioavailability (0.55), drug-likeness score (0.82), along with ideal pharmacokinetics profiles and higher protein-ligand stability, naringenin is considered as a potential and non-toxic anticancer candidate to be used for melanoma as alternative or complementary agent. The integrative and systematic analyses not only highlight the potential of phytoflavonoids but also select the potential lead from the library within limited resources to accelerate the current anticancer drug discovery process.
Collapse
Affiliation(s)
- Manoj Kumar Prajapati
- NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan 303121, India; Kashi Institute of Pharmacy, Mirzamurad, Varanasi, Uttar Pradesh 221307, India.
| | - Abhilasha Mittal
- NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan 303121, India
| | - Pritipadma Panda
- School of Pharmacy, Kalinga Institute of Industrial Technology Deemed to be University, Patia, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
2
|
Braga CB, Perli G, Fonseca R, Grigolo TA, Ionta M, Ornelas C, Pilli RA. Enhanced Synergistic Efficacy Against Breast Cancer Cells Promoted by Co-Encapsulation of Piplartine and Paclitaxel in Acetalated Dextran Nanoparticles. Mol Pharm 2024; 21:5577-5597. [PMID: 39365693 DOI: 10.1021/acs.molpharmaceut.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Malignant breast tumors constitute the most frequent cancer diagnosis among women. Notwithstanding the progress in treatments, this condition persists as a major public health issue. Paclitaxel (PTX) is a first-line classical chemotherapeutic drug used as a single active pharmaceutical ingredient (API) or in combination therapy for breast cancer (BC) treatment. Adverse effects, poor water solubility, and inevitable susceptibility to drug resistance seriously limit its therapeutic efficacy in the clinic. Piplartine (PPT), an alkaloid extracted from Piper longum L., has been shown to inhibit cancer cell proliferation in several cell lines due to its pro-oxidant activity. However, PPT has low water solubility and bioavailability in vivo, and new strategies should be developed to optimize its use as a chemotherapeutic agent. In this context, the present study aimed to synthesize a series of acetalated dextran nanoparticles (Ac-Dex NPs) encapsulating PPT and PTX to overcome the limitations of PPT and PTX, maximizing their therapeutic efficacy and achieving prolonged and targeted codelivery of these anticancer compounds into BC cells. Biodegradable, pH-responsive, and biocompatible Ac-Dex NPs with diameters of 100-200 nm and spherical morphologies were formulated using a single emulsion method. Selected Ac-Dex NPs containing only PPT or PTX as well as those coloaded with PPT and PTX achieved excellent drug-loading capabilities (PPT, ca. 11-33%; PTX, ca. 2-14%) and high encapsulation efficiencies (PPT, ∼57-98%; PTX, ∼80-97%). Under physiological conditions (pH 7.4), these NPs exhibited excellent colloidal stability and were capable of protecting drug release, while under acidic conditions (pH 5.5) they showed structural collapse, releasing the therapeutics in an extended manner. Cytotoxicity results demonstrated that the encapsulation in Ac-Dex NPs had a positive effect on the activities of both PPT and PTX against the MCF-7 human breast cancer cell line after 48 h of treatment, as well as toward MDA-MB-231 triple-negative BC cells. PPT/PTX@Ac-Dex NPs were significantly more cytotoxic (IC50/PPT = 0.25-1.77 μM and IC50/PTX = 0.07-0.75 μM) and selective (SI = 2.9-6.7) against MCF-7 cells than all the control therapeutic agents: free PPT (IC50 = 4.57 μM; SI = 1.2), free PTX (IC50 = 0.97 μM; SI = 1.0), the single-drug-loaded Ac-Dex NPs, and the physical mixture of both free drugs. All combinations of PPT and PTX resulted in pronounced synergistic antiproliferative effects in MCF-7 cells, with an optimal molar ratio of PPT to PTX of 2.3:1. PPT/PTX-2@Ac-Dex NPs notably promoted apoptosis, cell cycle arrest at the G2/M, accumulation of intracellular reactive oxygen species (ROS), and combined effects from both PPT and PTX on the microtubule network of MCF-7 cells. Overall, the combination of PTX and PPT in pH-responsive Ac-Dex NPs may offer great potential to improve the therapeutic efficacy, overcome the limitations, and provide effective simultaneous delivery of these therapeutics for BC treatment.
Collapse
Affiliation(s)
- Carolyne Brustolin Braga
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
| | - Gabriel Perli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, 20018 Donostia-San Sebastián Spain
| | - Rafael Fonseca
- Institute of Biomedical Sciences, Federal University of Alfenas, UNIFAL-MG, 37130-001 Alfenas, Minas Gerais, Brazil
| | - Thiago Augusto Grigolo
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, UNIFAL-MG, 37130-001 Alfenas, Minas Gerais, Brazil
| | - Catia Ornelas
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
- R&D Department, ChemistryX, R&D and Consulting Company, 9000 Funchal, Portugal
- R&D Department, Dendriwave, Research & Development Start-Up Company, 9000 Funchal, Portugal
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
| |
Collapse
|
3
|
Wang H, Wang X, Wang L, Wang H, Zhang Y. Plant‐Derived Phytochemicals and Their Nanoformulations for Inducing Programed Cell Death in Cancer. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202400197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Indexed: 01/05/2025]
Abstract
AbstractPhytochemicals are a diverse class of compounds found in various plant‐based foods and beverages that have displayed the capacity to exert powerful anticancer effects through the induction of programed cell death (PCD) in malignancies. PCD is a sophisticated process that maintains in upholding tissue homeostasis and eliminating injured or neoplastic cells. Phytochemicals have shown the potential to induce PCD in malignant cells through various mechanisms, including modulation of cell signaling pathways, regulation of reactive oxygen species (ROS), and interaction with critical targets in cells such as DNA. Moreover, recent studies have suggested that nanomaterials loaded with phytochemicals may enhance cell death in tumors, which can also stimulate antitumor immunity. In this review, a comprehensive overview of the current understanding of the anticancer effects of phytochemicals and their potential as a promising approach to cancer therapy, is provided. The impacts of phytochemicals such as resveratrol, curcumin, apigenin, quercetin, and some approved plant‐derived drugs, such as taxanes on the regulation of some types of PCD, including apoptosis, pyroptosis, anoikis, autophagic cell death, ferroptosis, and necroptosis, are discussed. The underlying mechanisms and the potential of nanomaterials loaded with phytochemicals to enhance PCD in tumors are also explained.
Collapse
Affiliation(s)
- Haoyu Wang
- Medical College Xijing University Xi'an Shaanxi 710123 China
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Xiaoyang Wang
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Long Wang
- Medical College Xijing University Xi'an Shaanxi 710123 China
| | - Haifan Wang
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Yuxing Zhang
- Medical College Xijing University Xi'an Shaanxi 710123 China
| |
Collapse
|
4
|
Swain SS, Sahoo SK. Piperlongumine and its derivatives against cancer: A recent update and future prospective. Arch Pharm (Weinheim) 2024; 357:e2300768. [PMID: 38593312 DOI: 10.1002/ardp.202300768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Piperlongumine, or piplartine (PL), is a bioactive alkaloid isolated from Piper longum L. and a potent phytoconstituent in Indian Ayurveda and traditional Chinese medicine with a lot of therapeutic benefits. Apart from all of its biological activities, it demonstrates multimodal anticancer activity by targeting various cancer-associated pathways and being less toxic to normal cells. According to their structure-activity relationship (SAR), the trimethylphenyl ring (cinnamoyl core) and 5,6-dihydropyridin-2-(1H)-one (piperdine core) are responsible for the potent anticancer activity. However, it has poor intrinsic properties (low aqueous solubility, poor bioavailability, etc.). As a result, pharmaceutical researchers have been trying to optimise or modify the structure of PL to improve the drug-likeness profiles. The present review selected 26 eligible research articles on PL derivatives published between 2012 and 2023, followed by the preferred reporting items for systematic reviews and meta-analyses (PRISMA) format. We have thoroughly summarised the anticancer potency, mode of action, SAR and drug chemistry of the proposed PL-derivatives against different cancer cells. Overall, SAR analyses with respect to anticancer potency and drug-ability revealed that substitution of methoxy to hydroxyl, attachment of ligustrazine and 4-hydroxycoumarin heterocyclic rings in place of phenyl rings, and attachment of heterocyclic rings like indole at the C7-C8 olefin position in native PL can help to improve anticancer activity, aqueous solubility, cell permeability, and bioavailability, making them potential leads. Hopefully, the large-scale collection and critical drug-chemistry analyses will be helpful to pharmaceutical and academic researchers in developing potential, less-toxic and cost-effective PL-derivatives that can be used against different cancers.
Collapse
Affiliation(s)
- Shasank S Swain
- Biotechnology Research and Innovation Council-Institute of Life Sciences (BRIC-ILS), Nalco Square, Odisha, India
| | - Sanjeeb K Sahoo
- Biotechnology Research and Innovation Council-Institute of Life Sciences (BRIC-ILS), Nalco Square, Odisha, India
| |
Collapse
|
5
|
Sa P, Singh P, Panda S, Swain RK, Dash R, Sahoo SK. Reversal of cisplatin resistance in oral squamous cell carcinoma by piperlongumine loaded smart nanoparticles through inhibition of Hippo-YAP signaling pathway. Transl Res 2024; 268:63-78. [PMID: 38499286 DOI: 10.1016/j.trsl.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/13/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Cisplatin alone or in combination with 5FU and docetaxel is the preferred chemotherapy regimen for advanced-stage OSCC patients. However, its use has been linked to recurrence and metastasis due to the development of drug resistance. Therefore, sensitization of cancer cells to conventional chemotherapeutics can be an effective strategy to overcome drug resistance. Piperlongumine (PL), an alkaloid, have shown anticancer properties and sensitizes numerous neoplasms, but its effect on OSCC has not been explored. However, low aqueous solubility and poor pharmacokinetics limit its clinical application. Therefore, to improve its therapeutic efficacy, we developed piperlongumine-loaded PLGA-based smart nanoparticles (smart PL-NPs) that can rapidly release PL in an acidic environment of cancer cells and provide optimum drug concentrations to overcome chemoresistance. Our results revealed that smart PL-NPs has high cellular uptake in acidic environment, facilitating the intracellular delivery of PL and sensitizing cancer cells to cisplatin, resulting in synergistic anticancer activity in vitro by increasing DNA damage, apoptosis, and inhibiting drug efflux. Further, we have mechanistically explored the Hippo-YAP signaling pathway, which is the critical mediator of chemoresistance, and investigated the chemosensitizing effect of PL in OSCC. We observed that PL alone and in combination with cisplatin significantly inhibits the activation of YAP and its downstream target genes and proteins. In addition, the combination of cisplatin with smart PL-NPs significantly inhibited tumor growth in two preclinical models (patient-derived cell based nude mice and zebrafish xenograft). Taken together, our findings suggest that smart PL-NPs with cisplatin will be a novel formulation to reverse cisplatin resistance in patients with advanced OSCC.
Collapse
Affiliation(s)
- Pratikshya Sa
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121 001, India
| | - Priya Singh
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121 001, India
| | - Sudhakar Panda
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India
| | - Rajeeb K Swain
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India
| | - Rupesh Dash
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India
| | - Sanjeeb Kumar Sahoo
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India.
| |
Collapse
|
6
|
Sahoo S, Sahoo SK. Phytonanomedicine as a therapeutic regulator of the tumor microenvironment for inhibiting cancer metastasis. Nanomedicine (Lond) 2024; 19:1227-1229. [PMID: 38686943 PMCID: PMC11285211 DOI: 10.2217/nnm-2024-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
“The development of phytonanomedicine-based approach seems to be a very promising candidate for modulating protumorigenic tumor microenvironment to suppress cancer metastasis.”
Collapse
Affiliation(s)
- Sonali Sahoo
- Biotechnology Research Innovation Council-Institute of Life Sciences (BRIC-ILS), Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana (NCR Delhi), India
| | - Sanjeeb Kumar Sahoo
- Biotechnology Research Innovation Council-Institute of Life Sciences (BRIC-ILS), Nalco Square, Bhubaneswar, Odisha, 751023, India
| |
Collapse
|
7
|
Joma N, Bielawski P, Saini A, Kakkar A, Maysinger D. Nanocarriers for natural polyphenol senotherapeutics. Aging Cell 2024; 23:e14178. [PMID: 38685568 PMCID: PMC11113259 DOI: 10.1111/acel.14178] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
Senescence is a heterogenous and dynamic process in which various cell types undergo cell-cycle arrest due to cellular stressors. While senescence has been implicated in aging and many human pathologies, therapeutic interventions remain inadequate due to the absence of a comprehensive set of biomarkers in a context-dependent manner. Polyphenols have been investigated as senotherapeutics in both preclinical and clinical settings. However, their use is hindered by limited stability, toxicity, modest bioavailability, and often inadequate concentration at target sites. To address these limitations, nanocarriers such as polymer nanoparticles and lipid vesicles can be utilized to enhance the efficacy of senolytic polyphenols. Focusing on widely studied senolytic agents-specifically fisetin, quercetin, and resveratrol-we provide concise summaries of their physical and chemical properties, along with an overview of preclinical and clinical findings. We also highlight common signaling pathways and potential toxicities associated with these agents. Addressing challenges linked to nanocarriers, we present examples of senotherapeutic delivery to various cell types, both with and without nanocarriers. Finally, continued research and development of senolytic agents and nanocarriers are encouraged to reduce the undesirable effects of senescence on different cell types and organs. This review underscores the need for establishing reliable sets of senescence biomarkers that could assist in evaluating the effectiveness of current and future senotherapeutic candidates and nanocarriers.
Collapse
Affiliation(s)
- Natali Joma
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealQuebecCanada
| | | | - Anjali Saini
- Department of ChemistryMcGill UniversityMontrealQuebecCanada
| | - Ashok Kakkar
- Department of ChemistryMcGill UniversityMontrealQuebecCanada
| | - Dusica Maysinger
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
8
|
Devi LS, Casadidio C, Gigliobianco MR, Di Martino P, Censi R. Multifunctionality of cyclodextrin-based polymeric nanoparticulate delivery systems for chemotherapeutics, combination therapy, and theranostics. Int J Pharm 2024; 654:123976. [PMID: 38452831 DOI: 10.1016/j.ijpharm.2024.123976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
As cancer being the most difficult disease to treat, different kinds of medications and therapeutic approaches have been prominently developed by scientists. For certain families of drugs, such as immuno-therapeutics or antibody-drug conjugates, efficient delivery systems are required during administration to protect the drugs from chemical degradation or biological inactivation. Delivery systems with the ability to carry different therapeutics or diagnostic agents or both, hold promising potential to tackle the abnormalities behind cancer. In this context, this review provides updated insights on how cyclodextrin-based polymeric nanosystems have become an effective treatment approach against cancer. Cyclodextrins (CDs) are natural oligosaccharides that are famously exploited in pharmaceutical research due to their exceptional quality of entrapping water-insoluble molecules inside their hydrophobic core and providing enhanced solubility with the help of their hydrophilic exterior. Combining the properties of CDs with polymeric nanoparticles (PNPs) brings out excellent versatile and tunable profiles, thanks to the submicron-sized PNPs. By introducing the significance of CD as a delivery system, a collective discussion on different binding approaches and release mechanisms of CD-drug complexation, followed by their characterization studies has been done in this review. Further, in light of recent studies, the article majorly focuses on conveying how promoting CD to a polymeric and nanoscale elevates the multifunctional advantages against cancer that can be successfully applied in combination therapy and theranostics. Moreover, CD-based delivery systems including CALAA-01, CRLX101, and CRLX301, have demonstrated improved tumor targeting, reduced side effects, and prolonged drug release in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Lakshmi Sathi Devi
- School of Pharmacy, Drug Delivery Division, University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, (MC), Italy
| | - Cristina Casadidio
- School of Pharmacy, Drug Delivery Division, University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, (MC), Italy; Department of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University 99, 3508 TB Utrecht, the Netherlands.
| | - Maria Rosa Gigliobianco
- School of Pharmacy, Drug Delivery Division, University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, (MC), Italy.
| | - Piera Di Martino
- Department of Pharmacy, Università "G. d'Annunzio" di Chieti e Pescara, Via dei Vestini 1, 66100 Chieti, (CH), Italy
| | - Roberta Censi
- School of Pharmacy, Drug Delivery Division, University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, (MC), Italy
| |
Collapse
|