1
|
Danişman-Kalindemirtaş F, Özerkan D, Kariper İA, Erdemir Cilasun G, Ülküseven B, Erdem-Kuruca S. Albumin-based nanocarriers loaded with novel Zn(II)-thiosemicarbazone compounds chart a new path for precision breast cancer therapy. Anticancer Drugs 2025; 36:208-219. [PMID: 39774332 DOI: 10.1097/cad.0000000000001679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
This study explores the therapeutic potential of albumin-bound Zn(II)-thiosemicarbazone compounds (Alb-ZnTcA, Alb-ZnTcB) against breast cancer cells. Previous research indicates that these compounds hinder cancer cell proliferation by blocking DNA synthesis, promoting oxidative stress to induce apoptosis, and disrupting the cell cycle to inhibit cellular division. This study focuses on the loading and characterization of these potentially chemically unstable compounds on bovine serum albumin-based nanocarriers. Accordingly, unlike previous studies using albumin nanoparticles, in this study, ultraviolet light was used to precisely bind the therapeutic agent to albumin during the integration of thiosemicarbazones, achieving controlled nanoparticle size to control nanoparticle size. The mean diameter of Alb-ZnTcA nanoparticles was 32 nm, while Alb-ZnTcB exhibited an average diameter of 43 nm. Notably, Alb-ZnTcA displayed the highest cytotoxicity toward breast cancer cells, suggesting an optimal size for cellular uptake. Additionally, albumin-bound compounds showed enhanced cytotoxicity at lower concentrations, potentially minimizing adverse side effects. Apoptosis analysis indicated that both Alb-ZnTcA and Alb-ZnTcB induce cell death predominantly through apoptosis, effectively preventing the uncontrolled proliferation of cancer cells. These findings demonstrate the potential of Zn(II)-thiosemicarbazone compounds loaded on albumin-based nanocarriers for breast cancer treatment. The increased potency of Alb-ZnTcA and Alb-ZnTcB compared to free compounds, along with their ability to activate apoptotic signaling pathways in MCF-7 breast cancer cells, highlights a promising approach for future cancer therapies. This study suggests that albumin-bound Zn(II)-thiosemicarbazone compounds could offer a targeted and effective strategy in breast cancer treatment, leveraging the advantages of nanocarrier-based delivery systems.
Collapse
Affiliation(s)
| | - Dilşad Özerkan
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu
| | - İshak Afşin Kariper
- Department of Science Education, Education Faculty, Erciyes University, Kayseri
| | | | - Bahri Ülküseven
- Department of Chemistry, Faculty of Engineering, Istanbul Cerrahpaşa University
| | - Serap Erdem-Kuruca
- Department of Physiology, Faculty of Medicine, Istanbul Atlas University, İstanbul, Turkey
| |
Collapse
|
2
|
Tokhtueva MD, Melekhin VV, Abramov VM, Ponomarev AI, Prokofyeva AV, Grzhegorzhevskii KV, Paramonova AV, Makeev OG, Eltsov OS. The arylbipyridine platinum (II) complex increases the level of ROS and induces lipid peroxidation in glioblastoma cells. Biometals 2025; 38:185-202. [PMID: 39397212 DOI: 10.1007/s10534-024-00646-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Here we present the biological properties of the arylbipyridine platinum (II) complex (arylbipy-Pt) and describe the potential mechanism of its antitumor action which differs from that of the well-known cisplatin. Leading to the oxidative stress and lipid peroxidation, the arylbipyridine platinum (II) complex showcases the significant cytotoxicity against the glioblastoma cells as shown by the MTT test. Using the 5-ethyl-2-deoxyuridine we study the proliferative activity of glioblastoma cells to affirm that arylbipyridine platinum (II) complex does not impede cell division or DNA replication. Staining by the MitoCLox dye and 2',7'-dichlorodihydrofluorescein diacetate demonstrates that the glioblastoma cells treated with arylbipy-Pt exhibit a strong increase of the lipid peroxidation and the stimulation of the reactive oxygen species formation. The hypothesis that arylbipy-Pt promotes oxidative death of tumor cells is confirmed by control experiments using N-acetyl-L-cysteine as an antioxidant. Further evidence for the oxidative mechanism of action is provided by real-time PCR, which shows high expression levels for genes associated with the heat shock proteins HSP27 and HSP70, which can be used as markers of tumor cell ferroptosis. To elucidate the chemical nature of the arylbipy-Pt complex activity, we perform 195Pt NMR spectroscopy and cyclic voltammetry measurements under biologically relevant conditions. The results obtained clearly indicate the structural transformation of the arylbipy-Pt complex in the DMSO-saline mixture, which is crucial for its further antitumor activity via the oxidative pathway. The found correlation between the molecular structure of arylbipy-Pt and its effect on the tumor cell cycle paves the way for the rational design of Pt complexes possessing the alternative mechanism of antitumor activity as compared to DNA intercalation, providing possible solutions to the major problems such as toxicity and drug resistance.
Collapse
Affiliation(s)
- Maria D Tokhtueva
- Scientific, Educational and Innovative Center of Chemical and Pharmaceutical Technologies, Ural Federal University, 620002, Yekaterinburg, Russian Federation.
| | - Vsevolod V Melekhin
- Scientific, Educational and Innovative Center of Chemical and Pharmaceutical Technologies, Ural Federal University, 620002, Yekaterinburg, Russian Federation
- Department of Medical Biology and Genetics, Ural State Medical University, Yekaterinburg, Russian Federation
| | - Vladislav M Abramov
- Scientific, Educational and Innovative Center of Chemical and Pharmaceutical Technologies, Ural Federal University, 620002, Yekaterinburg, Russian Federation
| | - Alexander I Ponomarev
- Department of Medical Biology and Genetics, Ural State Medical University, Yekaterinburg, Russian Federation
- Molecular Biology, Immunophenotyping and Pathomorphology Department, Regional Children's Hospital, Yekaterinburg, Russian Federation
| | - Anna V Prokofyeva
- Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russian Federation
| | - Kirill V Grzhegorzhevskii
- Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russian Federation
| | - Anastasia V Paramonova
- Scientific, Educational and Innovative Center of Chemical and Pharmaceutical Technologies, Ural Federal University, 620002, Yekaterinburg, Russian Federation
| | - Oleg G Makeev
- Department of Medical Biology and Genetics, Ural State Medical University, Yekaterinburg, Russian Federation
- Laboratory of Cell and Gene Therapy Technologies, Institute of Medical Cell Technologies, Institute of Medical Cell Technologies, Yekaterinburg, Russian Federation
| | - Oleg S Eltsov
- Scientific, Educational and Innovative Center of Chemical and Pharmaceutical Technologies, Ural Federal University, 620002, Yekaterinburg, Russian Federation
| |
Collapse
|
3
|
Li W, Li S, Zhu M, Xu G, Man X, Zhang Z, Liang H, Yang F. Developing a Rhodium(III) Complex to Reprogram the Tumor Immune and Metabolic Microenvironments: Overcoming Multidrug Resistance and Metastasis in Non-Small Cell Lung Cancer. J Med Chem 2024; 67:17243-17258. [PMID: 39298516 DOI: 10.1021/acs.jmedchem.4c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
To effectively inhibit the growth and metastasis of non-small cell lung cancer (NSCLC) and overcome its multidrug resistance (MDR), we designed and synthesized a series of rhodium (Rh, III) 2-benzoylpyridine thiosemicarbazone complexes. Through studying their structure-activity relationships, we identified the Rh(III) complex (Rh4) with excellent cytotoxicity against multidrug-resistant lung cancer cells (A549/ADR cells). Additionally, we successfully constructed an apoferritin (AFt) nanoparticle (NP) delivery system (AFt-Rh4 NPs). Importantly, AFt-Rh4 NPs not only exhibited excellent antitumor and antimetastatic capabilities against multidrug-resistant NSCLC in vivo but also demonstrated enhanced targeting ability and reduced systemic toxicity and adverse effects. Furthermore, we confirmed and elucidated the mechanisms by which Rh4/AFt-Rh4 NPs inhibit tumor metastasis and reverse MDR in NSCLC. This was achieved by reprogramming the immune and metabolic tumor microenvironments through induction of immunogenic cell death and inhibition of dual-energy metabolism.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
- School of Pharmaceutical Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
4
|
van Niekerk A, Chakraborty S, Bellis C, Chellan P, Prince S, Mapolie SF. Binuclear palladacycles with ionisable and non-ionisable tethers as anticancer agents. J Inorg Biochem 2024; 257:112608. [PMID: 38761581 DOI: 10.1016/j.jinorgbio.2024.112608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
The search for novel anticancer agents to replace the current platinum-based treatments remains an ongoing process. Palladacycles have shown excellent promise as demonstrated by our previous work which yielded BTC2, a binuclear palladadycle with a non-ionisable polyethylene glycol (PEG) tether. Here, we explore the importance of the PEG-tether length on the anticancer activity of the binuclear palladacycles by comparing three analogous binuclear palladacycles, BTC2, BTC5 and BTC6, in the oestrogen receptor positive MCF7 and triple-negative MDA-MB-231 breast cancer cell lines. In addition, these are compared to another analogue with an ionisable morpholine tether, BTC7. Potent anticancer activity was revealed through cell viability studies (MTT assays) revealed that while BTC6 showed similar potent anticancer activity as BTC2, it was less toxic towards non-cancerous cell lines. Interestingly, BTC7 and BTCF were less potent than the PEGylated palladacycles but showed significantly improved selectivity towards the triple-negative breast cancer cells. Cell death analysis showed that BTC7 and BTCF significantly induced apoptosis in both the cancer cell lines while the PEGylated complexes induced both apoptosis and secondary necrosis. Furthermore, experimental and computational DNA binding studies indicated partial intercalation and groove binding as the modes of action for the PEGylated palladacycles. Similarly, experimental and computational BSA binding studies indicated and specific binding sites in BSA dependent on the nature of the tethers on the complexes.
Collapse
Affiliation(s)
- A van Niekerk
- Department of Chemistry and Polymer Science, Stellenbosch University, Private bag X1, Stellenbosch 7602, South Africa,; Department of Human Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| | - S Chakraborty
- Department of Human Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - C Bellis
- Department of Human Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - P Chellan
- Department of Chemistry and Polymer Science, Stellenbosch University, Private bag X1, Stellenbosch 7602, South Africa
| | - S Prince
- Department of Human Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - S F Mapolie
- Department of Chemistry and Polymer Science, Stellenbosch University, Private bag X1, Stellenbosch 7602, South Africa
| |
Collapse
|
5
|
Zhao J, Wu K, Yang Y, Liu D, Zhang C, Li X. Novel Pt(IV) complexes containing salvigenin ligand reverse cisplatin-induced resistance by inhibiting Rap1b-mediated cancer cell stemness in esophageal squamous cell carcinoma treatments. Bioorg Chem 2024; 147:107384. [PMID: 38643568 DOI: 10.1016/j.bioorg.2024.107384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant tumor that is highly susceptible to metastasis, recurrence and resistance, and few therapeutic targets have been identified and proven effective. Herein, we demonstrated for the first time that Rap1b can positively regulate ESCC cell stemness, as well as designed and synthesized a novel class of Pt(IV) complexes that can effectively inhibit Raplb. In vitro biological studies showed that complex-1 exhibited stronger cytotoxicity than cisplatin and oxaliplatin against a variety of ESCC cells, and effectively reversed cisplatin-induced resistance of TE6 cells by increasing cellular accumulation of platinum and inhibiting cancer cell stemness. Significantly, complex-1 also exhibited strong ability to reversal cisplatin-induced cancer cell resistance and inhibit tumor growth in TE6/cDDP xenograft mice models, with a tumor growth inhibition rate of 73.3 % at 13 mg/kg and did not show significant systemic toxicity. Overall, Rap1b is a promising target to be developed as an effective treatment for ESCC. Complex-1, as the first Pt(IV) complex that can strongly inhibit Rap1b, is also worthy of further in-depth study.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, PR China
| | - Kai Wu
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, PR China
| | - Yang Yang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, PR China
| | - Donglei Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, PR China
| | - Chunyang Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, PR China
| | - Xiangnan Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, PR China.
| |
Collapse
|